
Activeness and Responsiveness

Maxime Gamboni

January 30, 2009

Abstract

In this paper we propose a new way of writing channel and process
types for the π-calculus, as well as a semantic description of two liveness
properties of channels: activeness (whether the process is able to receive
or send a request on the channel) and responsiveness (if a receiver is able
to eventually reply to a request).

Any combination of these properties can be associated independently
to input and output occurrences of names in a process and to their parame-
ters (thus specifying what a name polar may expect from its complement).

The type notation we propose puts an emphasis on protocols: A chan-
nel type segregates the server (input) side behaviour from the client (out-
put) behaviour, and the type for a process explicitly specifies how third-
party processes are permitted to interact and interfere with it.

We conclude the paper with a survey of some works on related topics
along with encodings of the various type notations.

1 Introduction

This work originated from a need to model complex data exchange in π-calculus,
in a way that “looks” atomic.

More specifically, we want to be able to encode in polyadic π-calculus (that
only allows transmitting names) expressions such as a〈ξ〉 where ξ is a complex
structure that may be of unbounded size (such as a list). The only way this can
be achieved is by first sending a name containing a pointer to the data to be
transmitted, and then transmitting the data small parts at a time.

One goal of such an encoding is to permit encoded processes to interact with
arbitrary π-calculus processes that were not necessarily obtained through the
encoding.

To see why we need to restrict which processes may interact with an encoded
process, consider the two following processes:

P receives a value v on channel a, sends a signal on channel s and
then decodes value v (discarding the result).

Q receives a value v on channel a, then decodes value v (discarding
the result) and finally sends a signal on channel s.

Assuming value decoding is immediate, those two processes are indistin-
guishable for an external observer as both receive a value on a and then send
a signal on s (in case value decoding takes a measurable time, they can be

1

made bisimilar again by inserting silent actions of corresponding lengths at the
corresponding places).

However the encoded forms of these processes are, respectively, as follows1:

[[P]] receives on channel a a name u holding an encoding of value
v, then sends a signal on channel s, and finally sends a decoding
request on channel u, discarding the reply.

[[Q]] receives on channel a a name u holding an encoding of value
v, then sends a decoding request on channel u. After receiving the
reply, it sends a signal on channel s.

Now these two processes can be distinguished by a process R sending a
(private) name u and ignoring any decoding requests: [[P]] will send the success
signal but [[Q]] will not, as it will be blocked waiting for a reply to its decoding
request.

More generally, to have bisimilarity of processes preserved by the encoding
we need the following properties to hold for value encodings:

1. Once sent, the transmitted data is fully determined

2. The data can be accessed by the receiver as many times as it wants, and does
not change from one access to the other

3. The sender has no way of knowing when and how many times the data is
decoded by the receiver

4. A decoding of the data always succeeds and terminates after a finite time.

The goal of this paper is to provide a precise description of requirement 4.
We start by defining channel types that describe how a process may inter-

act at a channel. A process which exhibits the behaviour declared in channel
types is said well-behaved. We can then define an encoding producing typed
processes that behave correctly as long as they only interact with well-behaved
processes. In the example above, the channel u will be declared “responsive”
by the encoding, making process R not well-behaved (as it refuses to reply de-
coding requests). Indeed, as we will show, no well-behaved process will be able
to distinguish between P and Q.

The rest of this paper is structured as follows:
Section 2 gives an accurate definition of responsiveness, as well as a notation

for channel and process types. We proceed by increments, starting with a very
simple notation and gradually adding elements to the types. Subsections 2.7
and 2.8, introduce the property of activeness (availability of a server or a client
at a channel). Subsection 2.9 introduces the concept of dependency networks
and subsection 2.10 finally provides a definition for responsiveness. We then
close the section with a number of refinements useful with polyadicity and re-
cursive channel types. In section 3 we discuss related work characterising similar
properties, and compare their relative expressive power.

1Although there are other ways to encode these processes, all exhibit a similar difficulty.

2

2 Types

We will now describe our needs for the expressiveness of types.
Before starting, a little vocabulary, as it is used in this paper:
“Channels” and “names” have their usual π-calculus meaning, a name be-

ing the syntactic element. Unless noted otherwise, lower case latin letters are
names. Through renaming, it may happen that two initially different names are
assigned to the same channel. A port of a channel a is either its input (“a”)
or output (“ā”) half. The letter p stands for a port. A tilde ˜ over a symbol
stands for a (usually ordered) sequence of elements whose individual elements
are represented by the same (tilde-less) symbol with numerical indexes. For
instance x̃ stands for x1, x2, . . . , xn.

The calculus considered in this paper is the full synchronous polyadic π-cal-
culus with replication, but not sums, recursion or matching:

P ::= (P |P)
∣∣ (νx)P

∣∣ !P
∣∣ a(x̃).P

∣∣ a〈x̃〉.P
∣∣ 0

2.1 Non-Homogeneous Properties

A first important property is that in such an encoding there are many classes of
channels, as the requirements for different channels differ depending on their role
in the encoding. In the processes [[P]] and [[Q]] given before, there are strong
requirements on channel u’s input port, but a and s, have very few constraints,
if at all, as they play precisely the same role as in the source calculus.

This is the reason for introducing channel types : rather than expressing
properties of a process as a whole, we focus on channels, and associate channel
types (written as σ) to names.

2.2 Parameter types

As names carried over channels can themselves be used as channels, it becomes
quickly obvious that a channel type should include the types of its parameters.

For instance, consider the process P = a(x).x̄ | a〈b〉.b(y).ȳ, which reduces to
P

τ−−→ b̄ | b(y).ȳ. If a’s type does not provide its parameter type, P does not
show any immediate typing error, even though P exhibits an arity mismatch
after the reduction: The parameterless output x̄ just requires x to be param-
eterless, b(y).ȳ requires b to have one parameter, and a〈b〉 requires a to carry
one parameter.

This suggests the notation σ ::= (σ, σ, . . . , σ) for a channel type (whose
recursion ends at parameterless channels, written ()). In the above example,
the left component requires a to be of type σa = (σx) = (()), while the right
component requires the type σa = (σb) = ((σy)) = ((())) for a, making the type
mismatch obvious.

2.3 Multiplicities

Consider the following situation:
A process A sends a value v to a process B, which then sends a reference to

the same value to process C. As explained before, A actually creates a process
[[v]]u encoding the value v into channel u, and sends the name u to B. B then

3

sends the same name u to C. Both B and C, to decode the value, send a
message on u, which is then replied to by A. Now C has the potential to change
the value v as it appears to B, by creating another receiver on u. Now, if the
scheduler is fair, on average one half of the decoding requests sent by B will
actually be intercepted by C.

A simple way to solve this issue is with the concept of multiplicities, which,
in their most general form, tell for a channel how many times it may appear
in input (respectively, output) subject position. For instance, both ports of a
appear in a|(νb) b.ā (even though one is deadlocked), and a’s input is used once
and b not used at all in (νcd) (c〈a〉 | d〈b〉 | c(x).x | d(y).0). We also need to
distinguish whether an occurrence is replicated (as a in ! a(x).x̄) or not.

The above issue can now be solved simply by declaring that u’s input port
has precisely one (replicated) occurrence in subject position, rendering C unable
to create one more occurrence without being rejected by a type checker.

The encoding scenario involves the following multiplicities:

1. Uniform or omega names such as u in the example have one replicated
input and an arbitrary number of outputs, replicated or not.

2. A decoding request is a message of the form u〈l〉 where l is linear, meaning
that it must occur exactly once in output (for the u-server to send a reply)
and exactly once in input (for the request sender to receive the reply).

3. Plain names are those that do not have any requirement.

Other cases may occur, as in the internal choice ā | a.P | a.Q, where the
output port must occur exactly once, and the input port at least once.

Rather than constructing a list of such channel classes we choose to define
port multiplicities (ranged over by m), and record multiplicities independently
for input and output ports. To cover the cases seen so far we need three mul-
tiplicities: 1, ω and F, standing respectively for “exactly one non-replicated
use”, “exactly one replicated use” and “no constraint”.2

A natural way of writing this information is to put multiplicities as exponent:
σ ::= (σ̃)mi,mo , where mi is the input multiplicities and mo the output

multiplicities. For instance
(
(σ̃)1,1

)ω,F would be the type for u in the encoding
example, where σ̃ describes how such a request is replied (and depends both on
the particular encoding and the source calculus type of the encoded value).

2.4 Local and Remote uses

All examples we have considered so far have been input-output-alternating, in
that input processes only output on their parameters. A counter-example is a
“server creator” ! a(x).!x(y).Q which creates a one parameter server with body
Q on all names sent to it. In that example, a type for a would be of the form(
(σ)ω,F

)ω,F. However exactly the same type would be given in the case where
the input on x is provided by the output of a (as in a〈b〉.! b(y).Q), and yet
composing these two processes no longer respects the channel type.

Continuing with the calculus encoding example, we can’t require the target
processes to have input-output-alternation without requiring processes of the

2The “At least one” case is obtained using F together with “activeness”, as shown later.

4

source calculus to have that property (which is most of the time an unreasonable
assumption).

This example shows that giving up the input-output-alternation property
requires adding information to channel types as to how uses of the parameters
are divided between the input and output side of the channel. One way of
expressing this information is in terms of a local/remote separation, which is
useful because it can easily be adapted to express the interface between a process
and its environment, as we will see in the next section.

Instead of merely recording a total number of port uses for a channel, we
write the local and the remote uses separately. To fix a notation, we write α/β
to mean α is local and β is remote.

For the parameter uses, we take, as a convention, the point of view of the
input process. For instance, consider a two linear parameter channel, whose
first parameter is alternating and second is not, as in:

a(xy).(x̄|y) | a〈bc〉.(b|c̄) (1)

The first parameter then has multiplicities 0, 1/1, 0, while the second has 1, 0/0, 1.
Note that this issue only applies to parameter types, not to (top-level) channel

types. We will provide a similar extension for the channel types in the next
section, but, for the moment, distinguish parameter types σ and channel types
π ::= (σ̃)mi,mo . This gives the following syntax for parameter types: σ ::=
(σ̃)mli,mlo/mri,mro , where l stands for “local” (i.e., channel’s input port), r is
remote (channel’s output port), i is parameter input and o parameter output.

For instance, 1 has, as a type for a, (()0,1/1,0, ()1,0/0,1)1,1 (in order, a’s input
does zero input on x, one output on x, one input on y and zero output on y,
while a’s output does one input on b, zero output on b, zero input on c and one
output on c. The outer 1, 1 exponent means that a is a linear name, i.e. is used
once in input and once in output.

Note that, even though in this example the parameter multiplicities look
very symmetric they need not be so. For instance the type (()0,F/F,F)1,1 is for
a channel whose input side may only use the parameter in output position, but
whose output may use the parameter without restrictions.

2.5 Process Types

In this section we propose a way to use the channel type notation to describe
entire processes, with process types.

To explain the similarity between channel and process types we consider the
interface between a process P and its environment as a special kind of channel
whose parameters are the names free in the process. For instance if z̃ = fn(P)
and a is a fresh name, then P ’s process type is a’s channel type in a(z̃).P . E
being a process representing the environment, interaction between P and E may
then be modelled as τ -reductions following a(νz̃).E | a(z̃).P

τ−−→ (νz̃) (E |P).
Using the notation introduced previously, we get Γ ::= (z1 : σ1, z2 :

σ2, . . . , zn : σn)1,1 as a notation for a process type, where zi covers z̃ = fn(P).
Two things can be noted in that expression. The first is that the exponent

1, 1 is rather uninteresting (it just means “there is one process and there is one
environment”). The second is that the σi are of the form (σ̃)mli,mlo/mri,mro

rather than (σ̃)mi,mo , i.e. they are parameter types rather than channel types.

5

Note that the local/remote terms make sense now, as these multiplicities tell
how the channel usages are divided between local (P) and remote (E).

Consider for example the process P = ! a(x).x̄. Wrapping it into an in-
put as described above gives b(a).P . In that process, the channel type for
b (and therefore the process type for P) is (a : (()0,1/1,0)ω,0/0,F)1,1. (The
“a :” label is used because channel names are not numbered and ordered
like channel parameters, but it remains essentially the same as a parameter
type.) Now consider a process E = a〈t〉.t acting as the environment for P .

The interaction P
a(t)
−−−−→ P |t̄ t̄−−→ P with that process corresponds to the

reduction b(a).P | b(νa).E −→ (νa)
(
(! a(x).x̄) | (a〈t〉.t)

)
−→ (νa)

(
(P |t̄) | t

)
−→

(νa)
(
P |0

)
. The process type for the intermediary form P |t̄ would be (a :

σa, t : ()0,1/1,0)1,1, where σa is a’s type seen before. Finally, after t has been
consumed, we get (a : σa, t : ()0,0/0,0)1,1, expressing the fact that t has been fully
used. If, for completeness, we wanted to mention t in the type for P before the
first transition, it would have been t : ()0,0/1,1, expressing the fact that it may
not be used in any way by the process, and the environment may use both ports
exactly once. The first transition ((0, 0/1, 1) −→ (0, 1/1, 0) on p’s multiplicities)
can now be seen as E passing t’s output capability to P .

2.6 Types as Triples

In this section we propose a change in channel type notation, to make it more
natural and more extensible.

Although there is no serious problem in having channel types of that form in
a process type, the issue is that, as the examples showed, multiplicities are not
preserved by transitions, while the intuition would suggest that for a channel
there should exist a single channel type which remains valid over time.

For instance, in a|b a−−→ b, a’s type (a being assumed linear) evolves as
()1,0/0,1 −→ ()0,0/0,0, and in a|ā τ−−→ 0, a’s type evolves as ()1,1/0,0 −→ ()0,0/0,0.

Another issue, perhaps more serious, is that multiplicities are not preserved
by composition. For instance, in P = a|b|ā, the first component has ()1,0/0,1 as
a type for a, the second has ()0,0/1,1, the last has ()0,1/1,0, and in P , a has type
()1,1/0,0. So, in a single process, a single channel has four different types (plus
()0,0/0,0 which is a’s type after the reduction on a).

Lastly, the notation introduced here, unlike the one used until now, is easily
adaptable to the concept of “parameter protocols” which will be explained later.

All these considerations suggest separating channel types and channel mul-
tiplicities, while still keeping the same amount of information.

For a process type we use the notation (Σ; ΞL; ΞR), where Σ maps names to
channel types, ΞL contains the local channel usage information and ΞR contains
the remote channel usage information. Similarly, for channel types we use the
notation (σ̃; ξI ; ξO) where σ̃ is a set of channel types for the parameters and ξI ,
respectively ξO, gives the parameter multiplicities found in the channel input,
respectively output. Note that it is now no longer necessary to distinguish
between channel and parameter types.

A channel type (σ̃)mli,mlo/mri,mro for a channel a is separated into (σ̃),
amli,mlo and amri,mro , and each parameter type σi ∈ σ̃ is similarly split into
its own parameter sequence, input and output behaviour. imi,mo means that

6

parameter number i is used mi times in input position and mo times in output
position.

For instance, all names being assumed linear, a〈b〉.b̄ has as a process type
Γ = (a : σa, b : (); a0,1, b1,1; a1,0, b0,0): both a and b are locally output once, b
is locally input once (as a consequence of being sent to a) and a is remotely
input once, with σa = ((); 11,0; 10,1) (the first parameter is parameterless, and
a’s input performs one input on it while a’s output performs one output on it).

In the notation used before this section, the same process type would have
been written as (a : (()1,0/0,1)0,1/1,0, b : ()1,1/0,0), omitting the 1, 1 process type
exponent. For more clarity we will typically write am, ām

′
instead of am,m

′
. In

channel types, terms with zero exponent (such as 10) are usually omitted and
so are exponents equal to one (writing for instance ā instead of ā1).

In process types, local terms with exponent zero and remote terms with
exponent F are omitted, so that, for instance, the channel a need not be men-
tioned in a type for process 0, as it has local multiplicity zero (in both ports) and
remote multiplicity F for both ports, expressing the fact that the environment
has, by default, no constraints on the way it may use the channel.

In that simpler notation, the same process type Γ may be written (a : σa, b :
(); ā, b, b̄; a, ā0, b0, b̄0) (the process does an output on a, an input on b and an
output on b, while the environment an input on a, no output on a and no inter-
action on b), with σa = ((); 1; 1̄) (the channel carries a parameterless channel,
its input does an input on the parameter and its output does an output on the
parameter).

It should be clear that this new notation, although more extensible and more
sound, is precisely as expressive as the previous one, in that any type can be
translated from the old to the new notation and vice versa. Also note that the
representation of a process type as the channel type of an imaginary process-
environment communication channel still holds — we use different symbols to
emphasise the fact that process types describe channel names while channel
types describe parameter numbers.

2.7 Activeness

An important requirement which is at the centre of this work is the ability to
specify in a type that a process should be listening (respectively, ready to send)
at an input (resp., output) port. We call this property activeness at a port3.

For example, consider a process decoding a value v and sending a sig-
nal on a channel s: P = a(v).case v of (x, y) : s̄, and a process first sending
a signal and then decoding v: Q = a(v).s̄.case v of (x, y) : 0. These pro-
cesses could be encoded as [[P]] = a(u).u(νr1r2).r1(x).r2(y).s̄ and [[Q]] =
a(u).s̄.u(νr1r2).r1(x).r2(y).0, where u holds an encoding of v.

As said in the introduction, P ∼ Q but [[P]] 6≈ [[Q]] because they are
distinguished by R = a(νu).⊥.!u(xy).(x〈b〉|y〈c〉) (where ⊥.P def= (νt) t.P with
t 6∈ fn(P)). Note that R does not violate any multiplicity constraint, as the
receiver on u is present — it is merely deadlocked (inactive).

Before we propose a solution, it should be noted that requiring u to be active
3Input activeness is commonly called receptiveness.

7

is not enough, as is shown by

R = a(νu).!u(xy).⊥.(x〈b〉|y〈c〉) (2)

where u is active (after the transition a(νu)), but, after u receives a request r1r2,
the reply itself is not. This will be addressed in the section for responsiveness.

Moreover, in order to have a property which is meaningful for nonlinear
names we add a reliability requirement to activeness.

Consider the process P = p(x).x̄, where p is plain (i.e. has multiplicities
F,F). At first sight it might seem natural to declare that p is active in P .
However that input is not reliable because, composing P with a process p〈b〉.s̄
will not necessarily trigger the success signal s̄, if a third party E = p〈c〉.
“steals” the input at p. In contrast, the replicated form !P = ! p(x).x̄ is reliable,
because there is an infinite supply of inputs at p and no third party can steal
them all (assuming fairness on the scheduler).

Finally, our target being encodings, there will be typically an overhead (in
terms of extra τ -transitions) in an encoded process compared to the original one.
Therefore we consider it acceptable if a number of τ -transitions are required
before a receiver (or sender, for output-activeness) becomes available. Ruling
out such “weak activeness” would give what we call strong activeness and is
characterised by works such as [San99, ABL03].

This gives us an informal definition for activeness:

Definition 2.7.1 (Activeness) A port p is said active in a process P if

1. P will eventually (i.e. possibly after a finite number of τ -reductions) con-
tain an unguarded occurrence of p in subject position.

2. The port is “reliable”, in the sense that no third party can interfere in a
way that prevents p from being made available to a process attempting to
communicate with that port.

A more precise definition (in particular making “eventually” and “interfer-
ence of a third party” more precise) is given in the next section.

We extend channel and process types as follows, to permit requiring active-
ness on channels: Instead of pm, we may write pmA, (where p is a port, a or ā)
meaning that the port must be active (and have a multiplicity m).

Assuming σp is the type for b and c in the example, the reply channels r1

and r2 will have a type such as σr = (σp; 1F1̄F; 1F1̄F). The F exponents
and absence of A-index mean that both the input and output sides of reply
channels are free to interact with the parameters b and c in any way. A type for
u can then be written σu = (σrσr; 1̄A, 2̄A; 1A, 2A), telling that u’s input side
must provide one active output on both parameters, and u’s output side must
provide one active input on both parameters. Finally, the channel a will have a
type such as (σu; 1̄F; 1ωA1̄F), where both input and output side of a may send
requests on the parameter u but a’s output side must provide one replicated
(“ω”) and active (“A”) input at the parameter.

Note that it makes little sense to specify activeness on the remote side of a
process type, so we will usually have activeness marks on the local side only.

Some examples:
The type (a : (), b : (); aA, b; ā, b̄) is a valid description of a | b, of a.b and a | ⊥.b,
but not of ⊥.a | b. It does however correctly describe (νt) (t̄|t.a.0): the fact that

8

a is not immediately available is not an issue if it is guaranteed to eventually
become so.

The type (a : (); aF
A; a0āF) is a valid description of ! a.0, but not of a.0,

because the latter is unreliable. (a : (); aF
A; a0ā1), on the other hand, is a valid

description of both processes.
Finally, using the notation ?.P def= (νt) (t̄ | t | t.P) (t fresh) as a shortcut for

an “unreliable prefix”, (a : ((); 1̄A; 1A); aA; a0ā) is a valid description of a(x).x̄,
but neither describes ?.a(x).x̄ (a is not active) nor a(x).?.x̄ (x is not active).
Weakening the process type to (a : ((); 1̄A; 1A); a; a0ā) allows describing the first
two processes, but still not the last: It is no longer required for a to be active,
but if a request is received then it must be replied, because the parameter is
declared active in the channel type.

2.8 A word about Fairness

In this section we clarify the meaning of the (ambiguous) word “eventually” used
in the Definition 2.7.1 for activeness. That word hides a fairness assumption
on the scheduler, and we now consider a series of processes with increasing
requirements for activeness, and, for each, we discuss whether a port s̄ should
be considered active. This will help indicating more accurately what is required
of the scheduler. We assume s is bilinear, so that reliability is not an issue.

The simplest example is P1 = s̄, where s̄ is strongly active.
Now an unrelated but unfinishing computation should not affect activeness:

In P2 = s̄|Ω (where Ω is any process with Ω −→ Ω, for instance (νt) (t̄ | ! t.t̄)), s̄
is still strongly active.

As already said, a finite number of transitions preserves activeness (but no
longer strong activeness), as seen in P3 = τ.τ . . . τ.s̄ |Ω (for a finite number of
τ , and where τ.P def= (νt) (t̄|t.P) for some fresh t).

The following example is more interesting in that the number of transitions
is no longer bounded:

P4 = ! a(x).x̄ | ! a(x).a(νy).y.x̄ | a〈s〉

In this process, every request sent to a may be received by the first or by
the second input. The first input immediately responds to requests while the
second one resends the request. So, the request a〈s〉 will, under a fair scheduler,
loop in the second input for a while, and then eventually be passed to the first
input, after which the requests to the second input cascade back until the s̄
output is fired. It seems therefore reasonable to consider s̄ to be active in this
process, as it matches the accepted definition of fairness (see for instance [PT00],
Section 2.9, as well as [CC04]), in that the first input is continuously available,
and at each step there is a request to a available, so that the first input should
eventually catch one request, after which we are back to P3.

A last example, which, in our opinion, would be requiring too much from a
scheduler (as even a stochastic scheduler would not satisfy it), is the following.
This example shows that a naive activeness (of s̄ in P) definition such as “∀Q
s.t. P =⇒ Q, Q⇓s̄” would be too weak.

P5 = ! a(x).x̄ | ! a(x).a(νy).y.a〈x〉 | a〈s〉 (3)

9

In this example, the second output, when receiving the reply to its own
request a〈y〉, re-sends the request it received rather than replying to it, so that
the global behaviour is analogous to a random walk. Although a stochastic
scheduler (randomly and independently choosing one a-input for each a-output)
will eventually reach the output at s, adding more copies of the second input to
the program will have the probability of s̄ being fired fall to zero.

The fundamental difference between P4 and P5 is that in the former, at
any point, there is a possibility of progress towards strong activeness of s̄. In
other words, at any time, there exists a strong transition that brings the process
“closer” to firing s̄. In P4 this progress is very simple, in that having the first
input handle a request passes from a process where the number of required τ -
transitions is not bounded, to one where it is bounded. A process P ′4 where the
progress is slightly more elaborate would be obtained by replacing a〈s〉 in that
process by a〈s1〉.s1.a〈s2〉.s2 . . . sn−1.a〈s〉. In that case, the “distance” towards
an output at s is n, and is reduced by one every time the first a-input is used.
When that distance reaches zero, we are back to case P3, with a finite number of
transitions. The usual fairness assumption now works, because if at any point in
time the scheduler has the possibility to make an (irreversible) progress towards
strong activeness, and if the number of times such progress is required is bound
(it is 1 for P4 and n for P ′4), then s̄ will eventually be fired. In P5, no such
irreversible progress occurs, because any diminution of the call stack can be
cancelled by calling the second a-input a sufficient number of times.

In order to obtain a precise definition for activeness we introduce a “game”
between two players (for brevity, this definition assumes s to be linear and its
local multiplicities to be s0s̄1). Combining this definition with 2.7.1 poses no
difficulties and mainly consists in replacing Player 1’s τ -transitions by arbitrary
transitions, as long as the port being tested has a non-zero remote multiplicity.

Definition 2.8.1 (Fairness) The linear port p is active in P if Player 2 has a
winning strategy in the following game (where “current process” is initially P):

Player 1 plays first, and, at each turn, may replace the current process P ′

with any process Q such that P ′ =⇒ Q.
Player 2, at each turn, may either do nothing or replace the current process

P ′ with any process Q such that P ′
τ−−→ Q.

Player 2 has won if the current process P ′ ever satisfies the P ′↓p property.

In that definition, Player 2 models the “opportunities” the scheduler has
to make progress, while player 1 models the times when the scheduler doesn’t
“take advantage” of those opportunities.

It is now clear that, in P4, player 2 simply connects any existing a-output
to the first input, and wins, while, in P5, player 1 simply activates the second
input at least once at every turn, preventing s̄ to ever become available.

2.9 Conditional Activeness

Consider the process P = a.b where both a and b are linear. According to the
definition given above, b is not active, simply because it is blocked by a.

This makes (a : (), b : (); aA, b; a0ā, b0b̄) a correct type for P (while (a : (), b :
(); aA, bA; a0ā, b0b̄) would be incorrect).

10

However, if P is composed with a process where ā is active, b becomes
active as well: P |ā has a (weak) transition using a as subject. In order to
permit a type system to infer that form of causality we represent in the process
type the relation between a and b with the notation āA < bA. The order
relation symbol is used in the sense “after ā is active, b will be active”. A more
accurate process type for P (which helps distinguishing it from b | ⊥.a where a
can’t be made active no matter what the process is composed with) is therefore
(a : (), b : (); b̄A < aA, bA; a0ā, b0b̄).

More generally, an element in the local portion of a process type (the second
component) is of the form εpmA (p = a or p = ā for some name a), where ε is a
predicate (called “dependency”) obeying the following grammar:

ε ::= pmA <
∣∣ pmA ≤

∣∣ (ε|ε)
∣∣ (ε&ε)

∣∣ ¬
∣∣ ∅

The symbol < stands for a strong dependency as in the situation above, while
≤ stands for a weak dependency and will be described in section 2.13. The op-
erators | and & have their usual meanings as disjunction and conjunction, ¬
is the “unsatisfiable dependency” (¬pA means p is not active) and ∅, usually
omitted, stands for unconditional activeness. We also typically omit the & op-
erator, writing just εε′ for ε&ε′. In the following sections we will first generalise
the dependency system as far as our application requires, before applying the
corresponding extension to channel types.

2.10 Responsiveness

In this section we study relationships between activeness of a channel and ac-
tiveness of names carried in that channel. Specifically, consider again the pro-
cess (2). After the transition a(νu), all free names are active, but, as already
discussed, that process is not acceptable because after a transition u(r1r2), it
contains two inactive names r1 and r2. One way to solve this would be to
strengthen the definition of activeness, but, instead, we choose to introduce a
separate concept, responsiveness, so that dependencies of activeness and respon-
siveness may be computed separately, which permits typing more processes.

Definition 2.10.1 (Responsiveness) Given its type σ, we say a port is re-
sponsive if, whenever it is consumed, all its parameters are themselves respon-
sive, and the ones declared active in σ actually are active.

For instance, in R as given in (2), u is active (after a transition a(νu))
but not responsive, because an additional transition labelled u(r1r2) leads to a
process where neither ri are active, though they are declared so in the channel
type.

We now generalise process types to allow dependencies between activeness
and responsiveness.

Just as ε in εpmA gives the dependencies for p’s activeness, εpmR gives the
dependencies for p’s responsiveness. Note that specifying twice the multiplicities
of a single port (as m in εpmA, ε

′pmR) is redundant, so we typically omit one of
them, or, alternatively, use separate terms for multiplicities and dependencies,
as in pm, εpA, ε

′pR.
The following example illustrates this:

11

t.a(x).u.x̄

As far as activeness is concerned, we have ∅tA, t̄A < aA, t̄AāA < uA, and,
after a has been consumed and x made visible, ūA < x̄A.

By definition, x̄A ≤ aR (a is responsive if x̄ is active — the reason for using
a weak dependency “≤” rather than a strong one will be clarified later, but
this distinction is not important at this point of the discussion), which gives
us ūA < aR. Why doesn’t a’s responsiveness depend on t̄A? The idea is that
responsiveness’s dependencies are those that are required to provide a reply
after a request has been received. In this case, t̄A is no longer needed once a has
received a request, but ūA is required to answer it. Inversely, t̄A is required for
a communication on a to take place, but ūA is not needed for that.

The following process (where a is plain active) is another illustration of the
duality between activeness and responsiveness:

t1.a(x).u1.x̄ | t2.a(x).u2.x̄

Now we have (t̄1A|t̄2A) < aA and ū1Aū2A < aR: any of the t̄iA must be
provided for a to be active, but both ūiA must be provided for a to be responsive.
The reason is that the sender can’t know for certain which input on a will receive
the request, and therefore must provide both ūi to be certain the request gets
replied.

Finally, the following process shows why keeping activeness and responsive-
ness separate when computing dependencies is interesting:

a〈t〉.! b(x).x̄ | ! a(y).b〈y〉 (4)

We have both aA < bA (because of the left-hand component) and bR < aR
(because of the right-hand component), and yet the process isn’t deadlocked.
However, not distinguishing aA and aR would result in the circularity “a < b <
a” and have the process rejected.

2.11 Labelled Dependencies

In this section we describe more formally how computing responsiveness de-
pendencies work, and more precisely how to describe the “dependencies after a
request has been received” idea.

For simplicity (to avoid confusion arising from parameter binding inherent
to inputs) we only consider output responsiveness for the moment. The output
version of an earlier example is as follows:

t.a〈b〉.u.b̄

The relevant dependencies are t̄A < āA, t̄AaAūA < b̄A and b̄A ≤ āR.
However, composing all these dependencies would result in t̄AaAūA < āR, which
is not correct, as explained in the previous section. In terms of dependencies,
the reason is that not all b̄A’s dependencies are relevant when computing the
ones for aR.

12

We propose using a notation of labelled dependencies to solve this issue.
(Note that this notation is only used as an intermediary construct while type
checking). The syntax for dependencies is extended as follows:

ε ::= · · ·
∣∣ l : ε

∣∣ ¬l : ε

The l : ε dependency (l being a “label” from some infinite set) places a
“marker” on part or all of a dependency for a resource, and ¬l : ε indicates
that said dependency is only relevant outside of regions marked with l. More
concretely, performing the substitution (l : ε){ε′/α} will replace, in ε′, all sub-
expressions labelled with ¬l : by ∅.

We can now label dependencies for responsive resources, and have all its
active resources labelled with the corresponding negative label, as follows: (¬l :
t̄AaA)&ūA < b̄A and l : b̄A ≤ āR. Now, substituting b̄A by (¬l : t̄AaA)&ūA <
in āR’s dependencies results in l : ((¬l : t̄AaA)&ūA) < āR which reduces to
l : (∅&ūA) ≤ āR and then to l : ūA < āR, as required.

Such labels can be obtained automatically for any process, but, for brevity,
we do not detail the algorithm here.

2.12 Parameter Protocols

Channel types, as described so far, indicate what resources the input and output
side of a channel must provide to the other end. As already said, we are working
in polyadic π-calculus, and as a consequence it can be interesting to permit the
two ends of a channel to negotiate these resources, rather than requiring each
end to provide everything without cooperation from the other end. In this
section we describe parameter protocols, which indicate to what extend such a
negotiation can occur over a given channel.

In the simple case where channel parameter don’t themselves carry param-
eters, the parameter protocol indicates in what order the parameters are to be
provided, as a partial order (where x < y indicates y may wait for x to be
provided before becoming itself available). One example is the “left to right
protocol” where parameter resources are ordered according to their position, so
that a(xy).x̄.ȳ and a(xy).(x̄|ȳ) are valid but a(xy).ȳ.x̄ is not, and similarly for
the output, a〈bc〉.b.c and a〈bc〉.(b|c) are valid but a〈bc〉.c.b is not). It is clear in
this example that composing a valid input with a valid output does not result
in a deadlock, but using an invalid input or output may result in a deadlock, as
in a(xy).x̄.ȳ | a〈bc〉.c.b, which reduces to b̄.c̄ | c.b which is deadlocked.

A more interesting example is the following, which creates on the first pa-
rameter a “cached copy” of a server passed as second parameter:

! a(bc).c(νx).x(t).! b(y).y〈t〉 (5)

The channel type for a (the protocol being omitted, for the moment) is
(σσ; 1ω 2̄F; 1̄F2ω), with σ being any single parameter channel. In this case the
protocol indicates that activeness and responsiveness on the first parameter may
depend on activeness and responsiveness on the second parameter (i.e. it is a
sort of right-to-left protocol but also involving responsiveness. We could drop
the right-to-left dependency on activeness by having the input on a immediately
available, but fetch the data from b on first use).

13

As far as notation is concerned, we apply the “process type as a channel
type” metaphor backwards, and simply put dependency statements in channel
types. The first example can now be typed with the channel type (λλ; 1̄A, 1A <
2̄A; 1A, 1̄A < 2A), and the second with (σσ; 2AR < 1ωAR2̄F; 1̄F2ωAR).

Note that a simple forwarder creator ! a(bc).! b(x).c〈x〉 has precisely the same
channel type as (5), showing that whether caching is performed or not is trans-
parent as far as types are concerned.

There are two important differences compared to dependency network in
process types, however:

• Both the second and third components of a channel type can contain de-
pendencies, unlike process types where having dependencies on the remote
side wouldn’t make much sense.

• Only strong dependencies, and dependency conjunction are useful in chan-
nel types: Having a disjunction would be equivalent to having a conjunc-
tion, because “allowing a port to use α or β” is equivalent to “allowing a
port to use α and β” — the other end will anyway have to provide both to
cover all cases. Moreover, having a ¬nA is equivalent to not mentioning
it at all in the channel type, and ¬nR would be invalid — such a state-
ment in a process type indicates an error detected by the type system,
and including it in a channel type would mean the corresponding receiver
is required to have such an error. Labelled dependencies are only used as
intermediary expression during type checking and therefore don’t belong
in channel types (which are meant as a specification).

2.13 Weak Dependencies

Weak dependencies briefly mentioned before differ from strong dependencies in
that a loop containing only weak dependencies vanishes (for instance α ≤ β
and β ≤ α reduces to ∅α and ∅β, meaning both are available), while a loop
containing at least one strong dependency (α < β and β < α reduce to ¬α and
¬β, meaning neither is available) indicates a deadlock.

The concept of weak dependencies is not crucial to our needs (replacing them
with strong dependencies still types a good number of processes), but it doesn’t
complicate the manipulation of types, and has a number of advantages:

• The programmer is not required to fully specify the parameter protocol for
a channel type, as it can be “completed” by putting, for every pair (α;β) of
parameter resources, bidirectional weak dependencies like {α ≤ β, β ≤ α}.
That way, if the process attempts to create a (strong) dependency either
way, a loop containing at least a strong dependency is created, resulting
in a deadlock. This permits defining the “empty protocol”, which simply
forbids dependencies between the input and the output side of the channel.

• “Apparent circularities” in dependencies, connecting two different nesting
levels of a recursive channel type, is not a deadlock, and will be accepted
by the type system if weak dependencies are used to connect local respon-
siveness to activeness and responsiveness on local resources. For instance,
! a(x).x〈a〉 is a server returning a pointer to a server of the same type, and
is responsive, because it only contains the weak loop aR ≤ x̄R ≤ aR. This

14

can be useful for encoding a sequential process containing loop, where in-
voking the encoding (a) of a line in the program returns (on x) a pointer
to the next line to be executed. In this example, responsiveness means
that an individual line will complete, not that the encoded program will
terminate, and, in particular, such an apparent circularity appears when
encoding a loop.

• Many natural extensions of the type systems can make use of weak depen-
dencies. For instance, an extension for checking determinism will type a
forwarder ! a(x).b〈x〉 as having a’s determinism weakly depend on b’s de-
terminism — indeed, loops in such relations do not prevent determinism.

3 Related work

In this section we present some related research, together with, when possible,
an encoding of their notation into ours, to help comparison.

3.1 Sangiorgi — The Name Discipline of Uniform Recep-
tiveness

This [San99] is one of the first papers to address the property of activeness
(which they call “receptiveness”). It works on asynchronous monadic π-calcu-
lus with sums and matching (which we don’t handle). A linear receptive name
corresponds, in our terminology, to bi-linear names that are input active, like a
in a1

Aā
1, and an ω-receptive name is the same, but with ω multiplicity on input

and plain multiplicity on output, like aωAā
F.

Their (Γ; ∆) process types can then be translated into our process types by
having a name a’s local multiplicities be āΓ(a)a∆(a) for the linear type system
(with A(a) = 1 if a ∈ A and 0 otherwise), and the complement multiplicities
ā1−Γ(a)a1−∆(a) on the remote side. For the ω-receptiveness type system, we
have, for each a, āFΓ(a)aω∆(a) on the local side, and āFaω(1−∆(a)) on the remote
one. Sangiorgi’s plain names correspond to aFāF, both locally and remotely
(names plain on both ports, and without activeness).

Note however that his type system is typing strong activeness, so that it does
not require dependency analysis, but also is not subsumed by ours. If however
we weaken his soundness theorem to allow a weak input transition when using
a receptive name, then our semantic definition matches his, and typability of
our type system strictly implies his.

He also provides definitions for labelled bisimilarity and barbed equivalence
that respect the concept of receptiveness. Generalising those definitions, in
particular 5.3, the one for labelled bisimilarity, would however require some
work, because if receptive names are allowed to carry receptive names, then the
x . v sub-process is not complete.

3.2 Pierce, Sangiorgi: Typing and Subtyping for Mobile
Processes

This paper [PS93] studies input and output capabilities (in our terminology,
types such as ∅, aF, āF, and aFāF), and establishes a subtyping relation, which

15

permits typing a〈x〉 while having x’s type different from a’s parameter type
(using the subtyping relation covariantly or contravariantly depending on which
capabilities of x are used by a’s receiver).

Their types (S̃)I with I ∈ {r,w,b} are easily encoded into our notation, as
follows:

[[a : (S̃)I]] def= (a : ([[S̃]]); aFIr āFIw ; aFĪr āFĪw)

where FIc is F if I ≤ c, 0 otherwise, where FĪc is the same but using c ≤ I,
and [[S1, . . . , Sn]] is an abbreviation of [[1 : S1]], . . . , [[n : Sn]].

Their types are thus more specific (all names are plain and none can be
declared active) but, with equivalent types, their type system accepts more
processes than ours, thanks to subtyping.

3.3 Kobayashi, Pierce, Turner: Linearity and the π-calcu-
lus

That paper [KPT99] is a specialisation of our system in that they only have
inert (multiplicity zero), linear (only one port is used, and linearly), bi-linear
(both ports are linear) and plain names (which they call ω), and no behavioural
property. They also introduce (ω; F) channels in section 7.3 (and call them ∗).
Like in Section 3.2, we can encode their types as follows:

[[a : pm[T̃]]] def= (a : ([[T̃]]); a[[m]]pi ā[[m]]po ; a[[m]]p̄i ā[[m]]p̄o)

where mpc is m if c ∈ p, 0 otherwise, [[1]] def= 1, and [[ω]] = F. [[T1, . . . , Tn]] is
an abbreviation of [[1 : T1]], . . . , [[n : Tn]].

They provide definitions for barbed bisimilarity, and show some confluence
results for linear channels.

3.4 Amadio et al.: The Receptive Distributed π-calculus

As the title suggests, this paper [ABL03] is on a distributed setting, where
they have the additional issue that, for a communication to succeed, its two
ends must be at the same site (which requires extra care when checking for
deadlocks). They also have matching, on a special set of names called keys.

So, the setting is more complex, with the trade off that their types are very
simple — all names are (in our terminology) active non-uniform ω input and
plain output and, just like [San99], they guarantee strong activeness, where no
internal action is tolerated between creation of a new name and it being ready
to use). More importantly, as a consequence of having I/O alternation and only
input activeness, they are only concerned about messaged being received — no
reply is guaranteed.

Their work is mainly interesting in the distributed setting — restricting it to
a local setting would reduce to the essentially syntactic check that all outputs
have at least one corresponding unguarded input.

Also note that they concentrate on non-uniform activeness based on recur-
sion (like a in µX.a(x).(x〈t〉 | a(y).(x〈t′〉 |X)) where µX.P stands for a recursive
process), which can’t be characterised in our type system without modification,
as the closest we have is uniform activeness obtained through replication.

16

3.5 Acciai, Boreale: Responsiveness in process calculi

This paper [AB08a] addresses concerns very close to ours, through two dis-
tinct type systems. Again, their setting is simpler than ours, in that it works
on synchronous π, I/O alternating and doesn’t consider combinations of active
and non-active names. On the other hand, they present, with their system
`1, an extension for recursive processes which is more powerful than our type
system, in that it permits handling unbounded recursion such as a function com-
puting the factorial of its parameter:, ! f(n, r). if(n = 0) r〈1〉 else (νr′) (f〈n −
1, r′〉 | r′(m).r〈n∗m〉). A naive dependency analysis would reject such a process,
because the recursive call would create a dependency fR < fR.

We conjecture that their analysis, based on the well-foundedness of parame-
ter domains, could be adapted to our dependency networks by having a bR < aR
dependency be weak if b’s parameter tuple is “lighter” than a’s. In the facto-
rial example, 〈n − 1, r′〉 being “lighter” than 〈n, r〉 (because n − 1 < n), the
self-dependency becomes fR ≤ fR and cancels out.

3.5.1 Types

A channel type can be responsive, ω-receptive or +-responsive. For the last
case they use a concept mostly equivalent to our multiplicities, which they call
“capabilities”. Their channel types can then be encoded into ours as follows:

• Inert type: [[a : I]] = (a : (); ; a0ā0)

• Responsive name: [[a : T [ρ,k]]] = (a : ([[1 : T]]); aAāA; a0ā0)

• Responsive parameter: [[1 : T [ρ,k]]] = (1 : ([[1 : T]]); āA; aA)

• ω-receptive name: [[a : T [ω,k]]] = (a : ([[1 : T]]); aωAā
F; a0)

• ω-receptive parameter: [[1 : T [ω,k]]] = (1 : ([[1 : T]]); āF; aωA)

• +-responsive names are encoded similarly, using the following correspon-
dance: on inputs, capabilities n, s, m and p correspond respectively to
total multiplicities 0, 1, F and ω, and on outputs, n, s, m and p corre-
spond respectively to total multiplicities 0, F, F and ω.

We have no way to prevent a name to be sent around (in object position),
so their ⊥ type can’t be encoded. Encoding it like I is a good approximation,
however. Also, their levels k are ignored by this encoding, because they are
implicitly contained in the dependency network which is inferred by the type
system. Those levels basically put an upper bound on the length of substitu-
tion chains ({β/α}{γ/β} · · ·) that can be done in activeness dependencies before
reaching the ∅-dependency. The above encoding is not completely accurate but
corresponds to what their type system enforces.

3.5.2 Semantics

As far as terminology is concerned, their “responsiveness” property mostly cor-
responds to our “activeness” property, on processes in which responsiveness (in
our terminology) holds on all names. It is not strictly equivalent because we
work with a labelled transition system and define activeness and responsiveness

17

in terms of interactions with the environment, while they work in a reduction
setting, and define responsiveness in terms of internal actions. The correspon-
dence can be made by comparing our activeness on a port p ∈ {a, ā} in a
process P to their responsiveness on channel a in a process like P |Q where Q
is a process interacting on p̄ (such as a〈b〉 or a(x).Q′, depending on p).

Note that their semantic definition is also weaker as it accepts as responsive
channel a in “unbalanced” processes like (a | ā) | a or (a | ā) | ā, where the right-
most a or ā can be seen as the “testing” process Q, but may not succeed.
Also they require more than fairness on the scheduler as they would consider
s responsive in process P5 | s (where P5 is given by equation (3)). However it
seems that strenghtening their semantic definition to reject such cases would
preserve soundness of their type system.

It should be noted also that they require all names to be “responsive” (or
ω-receptive, which is essentially the same but with another multiplicity) —
they don’t consider processes where both “plain” and “responsive” names are
involved.

3.5.3 Power

The base form of both their type systems, described in their sections 3 and 6
are strictly subsumed by ours.

Similarly to what was presented in this paper, their first type system uses
a dependency network is used to check strong linear activeness or strong ω-
activeness on input ports, and activeness for linear output ports. For a process
like b̄ | b.ā, a dependency a→ b indicates the order in which linear channels are
consumed. it uses levels to check delegation, in a way that corresponds more or
less to our responsiveness dependency chains, e.g. ! a(x).b〈x〉 requires b’s level
to be smaller than a’s.

Their first system rejects a number of processes accepted by our type system,
such as “half-linear names” like t in (νt) (t̄ | t.P | t.Q), as well as processes such as
(νa) (a(x).(x̄ | b(y).ȳ)|a〈t〉) because the input on b is not immediately available.
It is however weakly bisimilar to b(y).ȳ, which is typable.

On the other hand the extension for handling recursive functions goes beyond
what our type system is capable of, as already said.

The second type system allows guarded inputs, the “half-linear names” al-
ready mentioned and replicated outputs, but rejects some recursive functions
such as the “factorial” one given previously. It is also strictly subsumed by ours
because for instance they do not allow guarded free replicated inputs.

We would like to point out that this paper answers the question they rise at
the end of Section 6.2, concerning the generalisation of dependency graphs when
inputs may be nested. They give an example of process that would require such
a generalisation: b(x).a〈x〉 | c(x).a(y).x〈y〉 | c〈b〉, where all names are assumed
responsive (in their terminology, or “bi-linear active” in ours). That process
should be ruled out because it reduces to b(x).a〈x〉 | a(y).b〈y〉, where a and b
are now clearly deadlocked. Using dependency graphs on responsiveness (in
addition to activeness) rules out the first process, because it contains the cycles
bR ≤ c̄R < aR < bR and cR < b̄R < āR < cR.

In conclusion, generalising their analysis of recursion on well-founded do-
mains on our type system would give a type system that is strictly more powerful

18

than both their systems, so that it is no longer necessary to have two separate
systems with different typing strategies.

3.6 Acciai and Boreale — Spatial and Behavioral Types
in the Pi-Calculus

This [AB08b] combines ideas from spatial logics and from [IK01]. Their systems
relies on spatial model checking, but properties — both safety and liveness ones
— are checked against types rather than against processes. Implementation
and complexity issues, as well as the degree of completeness of the approach,
are not treated, but naturally one expects a type checking system to be simple
to implement and be of low complexity.

3.7 Kobayashi — TyPiCal

This [Kob08] is an implementation of a lock-freedom type system. Although
it also performs termination and information flow analysis we are particularly
interested in its lock-freedom analysis.

3.7.1 Terminology

We first introduce a few concepts used by TyPiCal when analysing processes.

Definition 3.7.1 (Deadlock) An input or output prefix in a process P is
deadlocked if it is top-level and P can’t be reduced.

An input or output prefix in a process P is deadlock-free if no reduction of
P leads to that prefix being deadlocked.

For example, if @Q : P −→ Q then all top-level actions in P are deadlocked.
In ! a(x).P |Q, all a-outputs are deadlock-free. In a.b̄ | b.ā, both a and b are
deadlocked. In P =?.a | ā, a is deadlock-free, but ā isn’t (P −→≡ ⊥.a | ā in
which ā is deadlocked, although P −→∼ a | ā in which ā is deadlock-free).

Deadlock-freedom is not a very interesting property on its own, because for
instance P |Ω is deadlock-free as it can always be reduced.

One way would be to require all processes to terminate, but a more general
approach is introduce to the following (strictly stronger) property:

Definition 3.7.2 (Livelock-freedom) An action of a process P on a port p
is livelock-free if it reaching top-level implies it can be consumed.

For example, a request to a server is livelock-free is and only if it is guaranteed
to be eventually received. In ! a(x).x̄ | a〈b〉 | b, the input at b is livelock-free,
and in P = ! a(x).b〈x〉 | ! b(x).a〈x〉 | a〈s〉 | s, the s-input is deadlock-free but not
livelock-free.

This property is related to activeness in that (although either definition
need to be adapted as we work in a labelled setting and TyPiCal in a reduction
setting) p is livelock-free if and only if the complement port p̄ is active.

Channel usages are a generalisation of our multiplicities, and tell for a par-
ticular channel how many times the input and output ports are used, and in
what order.

19

Definition 3.7.3 (Channel Usages) The usage of a channel is an expression
given by the following grammar:

U ::= 0
∣∣ ρ

∣∣ u.U
∣∣ (U |U)

∣∣ U&U
∣∣ µρ.U

u ::= !
∣∣ ?

Usage !.U does an output and then U ; Usage ?.U does an input and then
U . (U1|U2) uses according to U1 and U2 in parallel. U1&U2 uses according to
either U1 or U2 but not both. We write chanU (σ̃) for a channel of usage U and
parameters σ̃. When the context is clear, we may write just the usage for a
parameterless channel.

For example, a.b | b̄.c̄ uses a according to ?, b according to ?|! and c accord-
ing to !. In ! a(x).x〈1〉, a has usage ∗?|! (with ∗? def= µρ.(?.ρ)), and thus
chan∗?|!(!), b :! as a channel type (the parameter usages give the behaviour of
the channel’s input side, and here the a-input outputs on x). As a last exam-
ple, say a 6= t has usage U1 in P and U2 in Q. It then has usage U1&U2 in
(νt) (t̄ | t.P | t.Q).

Obligation and Capability levels generalise the levels used in [AB08a]:

Definition 3.7.4 (Obligation and Capability Levels) An obligation level
for an (input or output) primitive is a number (or ∞) telling when it will be
ready to fire (i.e. at top-level), while a capability level tells, if that primitive is
at top-level, when will it actually be consumed.

These levels are included into usages with the syntax u ::= !tOtC
∣∣ ?tOtC .

For example, consider the process a.b | b̄.c̄. The input a is at top-level and
thus has obligation level 0: Assuming it gets consumed at time t, b will be ready
to fire at time t + 1. The output b̄ is immediately ready, but will actually get
consumed at time t+1. b has capability 0 because no matter when it is brought
to top-level, b̄ will be ready to communicate with it. To sum up, we get the
following: a : (?0

t), b : (?t+1
0 |!0t+1), c : (!t+2

t′).
In this example, the obligation level of a port is equal to the capability level

of its complement. However this is not always the case in presence of non-
linearity: In ā.x | ā.y | a.z | x̄, a has usage (!0∞|!0∞|?0

0) — both ā have capability
zero because neither is guaranteed to succeed. Being at top-level, all a and ā
have obligation zero.

As expected, activeness, responsiveness, livelock-freedom, and obligation/capability
levels are tightely related:

• A term is active if and only if it has a finite obligation level and all com-
plement actions have a finite capability level.

• A term is strongly active if and only if it has a zero obligation level and
all complement actions have a zero capability level.

• A term is livelock-free if and only if it has a finite capability level.

• Input (resp., output) responsiveness corresponds to finiteness of all obli-
gation (resp., capability) levels on parameter usages.

20

3.7.2 Power

There is no subsumption relation either way between our system and the one
implemented by TyPiCal.

On the one hand, the usage information is strictly more expressive than
multiplicities (which can mostly be encoded in terms of usages, with the slight
difference that usages can’t express the uniformity inherent to ω-multiplicity).
This permits for instance TyPiCal to handle locks correctly, as well as processes
like a | a.s̄ | ā | ā (where s̄ is active because a’s input and outputs are balanced,
unlike for example b in b | b.s̄ | b̄ | b̄ | b̄). Multiplicities would dismiss locks as
well as that port a as plain names.

On the other hand, labelled dependencies as described in Section 2.11 permit
an accurate analysis of processes such as

(νt)
(
t̄
∣∣ t.(! z|! a(x).z̄.x̄)

∣∣ t.! a(y).ȳ
)

which randomly picks a “slow” or a “fast” a-input. TyPical incorrectly marks
the z̄ output as unreliable (not livelock-free). Labels make z’s unreliability (or
non-activeness, or infinite obligation level) irrelevant when checking a’s respon-
siveness.

It should be noted that neither our system nor TyPiCal recognises a as input
active in that process, which suggests a future research direction.

Finally, TyPiCal does not handle recursive channel types that would be
required to analyse processes like a〈a〉 or ! a(x).x〈a〉 but we believe it would be
a rather simple extension, as was the case for our system.

3.8 Kobayashi — Type Systems for Concurrent Programs

This paper [Kob02] covers most of the theorical basis (including channel usages,
capability and obligation levels) for TyPiCal, in the form of a type system
being described incrementally, similarly to the present paper. The analysis
given in Section 3.7 therefore remains mostly valid, except that [Kob02] works
on polyadic π. It also covers tail recursive functions (similarly to [AB08a]),
and a number of interesting extensions such as session types and termination
analysis.

Their types don’t seem to describe a separation of input and output protocols
in channel types.

Our strategy of using explicit dependency networks instead of obligation
(and capability) levels has the advantage of describing a process as an open
system, in that it describes how the process would react when composed with
an arbitrary other process. For instance, if P = a.b, then seeing P as a closed
system implies that b will never be available. Describing it with a dependency
network makes explicit in the type that b becomes active if ā is.

3.9 Igarashi and Kobayashi — A generic type system for
the Pi-calculus

This [IK01] is a framework for type-checking various safety properties such as
deadlock-freedom or race-freedom. It works with abstract processes — a simpli-
fied form of the target process — and soundness theorems establishing that if
the abstraction is well-behaved then so is the actual process. It is particularly

21

useful for safety properties as subject reduction is proven once and for all, so
that instances of the generic type system only need to show that if the abstract
process is well-behaved, the target process is not immediately breaking the de-
sired property. In contrast, our type system is focused on liveness properties like
activeness or termination so that showing the validity of a dependency analysis
done on the abstract process and the correspondance between activeness in the
abstract process and the actual one would likely require the same amount of
work as starting from scratch.

4 Conclusion

In this paper, we proposed a notation for channel and process types in the
π-calculus, as well as semantics for activeness and responsiveness.

The strong point of this notation is a higher expressiveness — not only it
permits encoding the types of all papers being considered (except for non trivial
channel usages), it allows for a more detailed specification of the protocol being
used on a channel and capabilities being transmitted.

Dependency networks in process types accurately specify the interface of the
process with the environment, so that having typed P and Q independently,
their types can be composed to obtain P |Q’s type (unlike most works covered
here, which treat processes as a whole and in a reduction-based setting and thus
can’t directly predict the effects of such a composition without type checking
the composition itself). Similarly, the reliability built into semantics (Section
2.8) means the properties are preserved by composition, which is not always the
case with such reduction-based settings. Finally, labelled dependencies permit
improving the accuracy of a type checking analysis by breaking dependency
transitivity where it is not relevant.

A direction for future work (after verifying and publishing an actual type
system based on this paper) is typing choice types, to be able, for example, to
express a process sending a message to exactly one of two channels, so that
boolean types can be encoded (! bT (tf).t̄) being the server encoding “true” and
b(νtf).(t.T+f.F) being the if-then-else construct. This in turn is important to
type non-trivial encodings. With some work, our system could also probably
integrate subtyping [PS93], recursion on well-founded data domains [AB08a]
and channel usages [Kob02, Kob08] for improved accuracy.

References
[AB08a] L. Acciai and M. Boreale. Responsiveness in process calculi. Theoretical Computer

Science, 409(1):59–93, 2008.

[AB08b] L. Acciai and M. Boreale. Spatial and Behavioral Types in the Pi-Calculus. In
Proceedings of the 19th international conference on Concurrency Theory, volume
LNCS 5201, pages 372–386. Springer, 2008.

[ABL03] R. M. Amadio, G. Boudol and C. Lhoussaine. The receptive distributed π-calculus.
ACM Transactions on Programming Languages and Systems, 25(5):549–577, 2003.

[CC04] D. Cacciagrano and F. Corradini. Fairness in the pi-calculus. Technical Report,
Dipartimenti di Informatica, Università di L’Aquila, 2004.

[IK01] A. Igarashi and N. Kobayashi. A generic type system for the Pi-calculus. ACM
SIGPLAN Notices, 36(3):128–141, 2001.

22

[Kob02] N. Kobayashi. Type systems for concurrent programs. In Proceedings of UNU/IIST
10th Anniversary Colloquium, volume 2757 of LNCS, pages 439–453. Springer, 2002.

[Kob08] N. Kobayashi. TyPiCal 1.6.2, 2008. http://www.kb.ecei.tohoku.ac.jp/ koba/typical/.

[KPT99] N. Kobayashi, B. C. Pierce and D. N. Turner. Linearity and the Pi-Calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

[PS93] B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. In
Proceedings 8th IEEE Logics in Computer Science, pages 376–385. IEEE Computer
Society, 1993.

[PT00] B. C. Pierce and D. N. Turner. Pict: A Programming Language Based on the
Pi-Calculus. In G. Plotkin, C. Stirling and M. Tofte, eds, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[San99] D. Sangiorgi. The Name Discipline of Uniform Receptiveness. Theoretical Computer
Science, 221(1–2):457–493, 1999.

23

