
Deciding Deterministic Responsiveness and

Closeness in π-calculus

Maxime Gamboni∗ António Ravara

September 21, 2006

Abstract

In order to write encodings of complex data structures in π-calcu-
lus one needs guarantees that certain fundamental properties of com-
munication (together referred to as discreetness) are preserved when
interacting with encoded processes.

These include closeness of the data transmission sub-process, re-
sponsiveness for data decoding requests, uniqueness of the transmitted
value and immutability of a transmitted value.

We propose a bisimulation to relate processes indistinguishable by
such a discreet environment.

Discreetness itself being undecidable we define a type system of π-
calculus processes with stronger but decidable constraints, and prove
that typable processes are discreet.

1 Introduction

This work originated from a need to model complex data exchange in a way
that “looks” atomic.

More specifically, we want to be able to encode in the polyadic π-
calculus [MPW92], [SW01], [Mil93] (that only allows transmitting names)
expressions such as a〈ξ〉 where ξ is an arbitrarily complex structure, pre-
serving fundamental properties of data transmission.

To make our requirements precise, we need to further specify the data
exchange protocol.

Encodings can be split into three broad classes:

∗This work was partially supported by FEDER, the EU IST proactive initiative FET-
Global Computing (project Sensoria, IST-2005-16004), and Fundação para a Ciência e a
Tecnologia (via CLC and the project Space-Time-Types, POSC/EIA/55582/2004).

1

a. The sender keeps the data and the receiver requests it every time it needs
it

b. The data is lazily reconstructed on the receiver side and transmitted
according to needs

c. The data is first fully transmitted and reconstructed on the receiver side
before proceeding

Method a requires taking special care to ensure data consistency accross
requests while method b and c require the encoding to be more complex (be-
cause it requires extra machinery for mirroring the remote data). Moreover,
method c only works if the data is finite, which may or may not be the case
(the source calculus might have a concept of recursive data for instance),
so extra checks are needed to validate environments. On the other hand,
methods a and b require the type system to make sure the sender can’t infer
if and when the data is accessed by the receiver.

As a criteria for choosing between the three above approaches we de-
cided that a simple encoding is preferable, even at the price of making the
type system more complex (as the same type system may be used for other
encodings and source calculi), so we choose method a.

Consider the following prototypical process:
(a〈u〉 | [[ξ]]u) | (a(x).x〈r〉 | r(v).P), where a piece of data accessible through
the server at u is sent over a. The receiver then sends a decoding request
and receives the reply v at r. The name u has what we call an ω-class and
needs to satisfy the following requirements:

1. Once sent, the transmitted data is fully determined.
2. the receiver can access it arbitrarily often and always gets the same

result.
3. The sender can’t know when and how many times the data is accessed.
4. A decoding request is always replied to after a finite time.
Of course these are about the data that is actually part of ξ — if it

contains references or pointers then only the pointer itself has to satisfy the
above, not the pointed structure. The requirements on r, which is said of
linear class, are different: As it is specific to a particular request, its input
does not need to be replicated. However, exactly one output must happen
(as we want one reply to a request). For simplicity we require exactly one
input and one output to be available at some point on r. We need to permit
side effects and non-deterministic behaviour outside of u’s input side, even if
it is prefixed by r. Indeed, a process having received the reply to a decoding

2

request should not suffer additional constraints. Finally a, not having any
particular requirement, is said plain.

These three name classes and the associated requirements are enough
to express a wide range of encodings. For instance, x being linear and t,
f plain, a boolean value can be encoded at an ω-name a as: True(a) =
! a(x, t, f).x〈t〉 and False(a) = ! a(x, t, f).x〈f〉. (if a then T else F) is
then done using (νt, f) a〈x, t, f〉.(x(p).p̄ | t.T | f.F). Note that the seman-
tics of ω and linear classes do not force the reply to be either t or f , as
! a(x, t, f).x〈p〉 (p plain) is considered valid. Choice types, which we leave as
future work, could enforce it.

Our setting is both a specialisation (in that we do not use affine modes)
and a generalisation of [YBH04].

The novelty lies in the introduction of plain modes that can freely in-
teract with ω or linear modes, yet having almost no constraints. To strong
normalisation (responsiveness in our terminology) we add closeness (lack of
side effects) and determinism.

Here is a brief overview of this paper.
In Section 2 we rigorously specify the above requirements (which we

group under the term of discreetness), and, in parallel, define discreet bisim-
ulations [Mil89], which relate processes that can not be distinguished by
discreet environments. Clearly, discreetness is not decidable, which is why,
in Section 3, we propose a correct (but necessarily incomplete) type system
that only types processes complying to these properties. Section 4, finally,
contains the proofs of various properties and theorems mentioned in the
previous chapters.

As a future development, the theory and type system introduced in this
paper can be extended with choice types that can type sums. A concrete
application of this work would be to prove the equivalence of TyCO and πV

a

[GNR04].

2 Semantic Requirements

In this section we give a rigorous definition of our semantic requirements.

2.1 Syntax

We are working in the synchronous polyadic π-calculus with full replication
and mixed sums.

A tilde placed over a symbol stands for a sequence, indexed from 1
to some finite number n. The same symbol without the tilde and with

3

an index represents an individual element of the sequence. For instance
x̃ = x1, x2, . . . , xn for some n ≥ 0.

A process P is one of 0, P |Q, (νx)P , a(x̃).P , a〈x̃〉.P and !P . One
syntactical requirement is that in input processes a(x̃).P , a may not be part
of x̃, and all names in x̃ must be distinct. Processes such as x〈x, x〉 are
allowed, however.

The calculus only has a free output but bound outputs can be simulated
with (νỹ) a〈x̃〉.Pỹ where ỹ ⊆ x̃ and Pỹ a process listening at all names in ỹ.

The set of free names in a process is defined as usual:
P fn(P)

0 ∅
P | Q fn(P) ∪ fn(Q)
(νx)P fn(P) \ {x}
P + Q fn(P) ∪ fn(Q)
a(x̃).P {a} ∪ (fn(P) \ x̃)
a〈x̃〉.P {a} ∪ x̃ ∪ fn(P)

!P fn(P)

Capture avoiding substitution P{x̃/̃y} is standard.

2.2 Channel Types

The definition of discreetness depends on the types of involved names. They
are defined among the lines of [YBH04].

An Action Mode describes the kind of interactions a process does at a
name.

Definition 2.2.1 (Action Modes) An action mode m is an element of
the set {↓l, ↑l,⋆l, ↓ω0 , ↓ω, ↑ω,⋆ω, p}.

Semantic modes are {↓l, ↑l,⋆l, ↓ω, ↑ω, p}, input and output modes are
respectively m↓ = {↓l, ↓ω, p} and m↑ = {↑l, ↑ω , p}, parameter modes are
m↓∪m↑, inert modes are m⋆ = {⋆l,⋆ω, ↑ω, p}, complete modes are mk =
{⋆l, ↓ω, p}, and resource modes are mr = {↓l, ↑l,⋆l, ↓ω, ↓ω0 ,⋆ω}. The
complement m of m is obtained by swapping arrows. p = p and ↓ω0 =↑ω.

Modes ↓l, ↑l, ⋆l respectively stand for input, output and uncomposable,
on a linear name; ↓ω, ↓ω0 , ↑ω, ⋆ω on an ω-name, input, unreplicated input,
output and uncomposable; p is for any kind of interaction over a plain name.

The ⋆l mode is used when a process does both input and output at a
linear name (uncomposable means that it does not compose with a process
where the name is free); ↓ω0 is used as a “temporary” mode and means a

4

non-replicated ω-input, that is completed once the process gets replicated;
⋆ω is used in cases such as P |p〈u〉.! u, where p is plain and u is ω. u, having
mode ⋆ω, may be used as a parameter by the corresponding receivers at p,
but may not otherwise be referenced in P . Note that ↓ω and ↑ω correspond
to ! and ? in [YBH04], respectively.

The class of a mode tells whether it is plain, linear or ω.
Parameter modes are those that an input can provide at its parameters.

Inert modes are actions that can be provided by weakening. A complete
mode is one that can be bound, and resource modes are those that can be
depended upon.

Definition 2.2.2 (Channel Types) Channel types are generated by this
grammar: σ ::= (σ1 · · · σn)m, where σi are the parameter types, n ≥ 0 and
m is an action mode. We write md(σ) to mean the action mode of a type.

This function is naturally generalised to channel types sets, as md(σ̃)
def
=

{m : ∃σi ∈ σ̃ : md(σi) = m}.
All action modes in a type except the outermost have to be parameter ac-

tion modes. The complement σ̄ of a channel type σ is obtained by replacing
the outermost mode by its complement.

ǫ stands for the neutral type . Brackets are omitted when there are no
parameters.

The mode of parameters are as seen from the receiving end. (unlike
[YBH04] — The reason why we write the parameter polarity independently
from the end is that plain names are managed without polarity.)

For instance σ = (↓l)
↓l would be a type for a in a(x).x̄. The complement

σ̄ = (↓l)
↑l represents the corresponding output a〈x〉.x.

Definition 2.2.3 (Channel Composition) The channel composition op-
erator ⊙ is the partial commutative operator on channel types derived from
the following rules.

σ ⊙ σ = σ if md(σ) ∈ {↑ω , p}
σ ⊙ σ = σ if md(σ) ∈ {↑ω , p}
(σ̃)↑l ⊙ (σ̃)↓l = (σ̃)⋆l

σ ⊙ ǫ = σ.

The reverse operator, channel subtraction, is used when a resource is
consumed (or migrates out of a process). We use a conservative definition,
where non-linear modes never disappear.

5

Definition 2.2.4 (Channel Subtraction) Channel subtraction is defined
only between identical types. Then, (σ̃)m1 \ (σ̃)m2 is equal to (σ̃)m, where m
is as follows.

1. m1 = m2 ∈ {↑ω , ↓ω, p} implies m = m1.

2. m1 = m2 ∈ {↓l, ↑l} implies m = ǫ.

The subtraction is otherwise undefined.

Note that we do not define subtraction in cases such as ⋆l\ ↓l or ↓ω \ ↑ω,
because they represent transitions that are not observable from the outside.

These operators are conventionally evaluated from left to right, e.g. σ1⊙
σ2 \ σ3 is read as (σ1 ⊙ σ2) \ σ3 and σ1 \ σ2 ⊙ σ3 as (σ1 \ σ2) ⊙ σ3.

Also note that in case σ \σ′ is defined, we have σ \σ′⊙σ′ = σ. However
the opposite rule σ ⊙ σ′ \ σ′ = σ usually does not hold.

Σ being a mapping of names to channel types, these are generalised as
follows:

(Σ⊙a : σ)(x) =

{

Σ(x) ⊙ σ if x = a
Σ(x) if x 6= a

(Σ\a : σ)(x) =

{

Σ(x) \ σ if x = a
Σ(x) if x 6= a

2.3 Operational Semantics

Table 1 defines the operational semantic of our target calculus. (Com2),
(Par2) and (Sum2) are omitted, and are the symmetrical versions of the
corresponding 1-indexed rules.

P ≡α Q means Q can be obtained from P using α-renaming.
The set of valid labels are τ for silent operation (also known as reduction),

a(x̃) for input, and (ν z̃) a〈ỹ〉, where z̃ ⊆ ỹ \ a, for output. When z̃ = ∅ we
omit the restriction operator.

The free output objects of a transition label are: fo(τ) = fo(a(x̃)) = ∅
and fo((ν z̃) a〈ỹ〉) = ỹ \ z̃.

The bound output objects of a transition label are: bo(τ) = bo(a(x̃)) = ∅
and bo((ν z̃) a〈ỹ〉) = z̃

The bound (either input or output) names of a transition label are :
bn(τ) = ∅, bn(a(x̃)) = x̃ and bn((ν z̃) a〈ỹ〉) = z̃.

Finally, the set of names of a label is: n(τ) = ∅, n(a(x̃)) = {a} ∪ x̃ and
n((ν z̃) a〈ỹ〉) = {a} ∪ ỹ.

Two transitions labels µ and µ′ are said equivalent, written µ ≡ µ′ if they
can be obtained from each other by changing bound names. For instance

6

a(x̃).P
a(ỹ)

−−−−→ P{ỹ/̃x}
(Inp)

a〈ỹ〉.P
a〈ỹ〉

−−−−→ P
(Out)

P
µ
−−→ P ′ x ∈ fo(µ)

(νx)P
(νx) µ

−−−−−→ P ′ (Open)
P

µ
−−→ P ′

!P
µ

−−→ !P |P ′ (Rep)

P
a(ỹ)

−−−−→ P ′ Q
(νz̃) a〈ỹ〉

−−−−−−−→ Q′ z̃ ∩ fn(P) = ∅

P |Q
τ

−−→ (ν z̃) (P ′|Q′)
(Com1)

P
µ

−−→ P ′
bo(µ) ∩ fn(Q) = ∅

P |Q
µ

−−→ P ′|Q
(Par1)

P
µ
−−→ P ′

P+Q
µ
−−→ P ′ (Sum1)

P
µ
−−→ P ′ x 6∈ n(µ)

(νx)P
µ
−−→ (νx)P ′ (Res)

P ≡α Q Q
µ
−−→ Q′

P
µ
−−→ Q′ (Alpha)

Table 1: Labelled Transition System

a(x, y) ≡ a(z, t) and (νx) a〈x, y〉 ≡ (νz) a〈z, y〉 6≡ (νz) a〈z,w〉. On input
labels, this renaming occurs independently of the subject, e.g. a(x, y) ≡
a(a, y).

We write P −→ Q to mean P
τ

−−→ Q. =⇒ is the transitive reflexive

closure of relation −→, and P
µ

==⇒ Q means P =⇒
µ

−−→ =⇒ Q. P
µ̂

==⇒ Q
means P =⇒ Q if µ = τ , P

µ
==⇒ Q otherwise.

The discreetness notions defined later require some knowledge about the
channel types of involved names, so from now on processes will always be
associated with a type mapping.

We lift this transition system to typed processes (Σ;P) where Σ is a
mapping of names to channel types and P a process. Channel type operators
⊙ and \ are trivially generalised to such mappings, treating a missing name
on either side as being mapped to the neutral type ǫ.

Let Σ and Σ′ be name-channel type mappings, P and P ′ processes and µ

a transition label such that P
µ

−−→ P ′. When µ 6= τ , we assume Σ(a) = (σ̃)m,
and σ̃z is the subset of σ̃ corresponding to z̃.

If µ = τ : (Σ;P)
µ
−−→ (Σ;P ′)

If µ = a(x̃): (Σ;P)
µ
−−→ ((Σ \ a : (σ̃)m↓

) ⊙ x̃ : σ̃;P ′)

If µ = (ν z̃) a〈x̃〉: (Σ;P)
µ

−−→ ((Σ \ a : (σ̃)m
↑

) ⊙ z̃ : σ̃z;P
′)

If any of these operators is undefined then so is the transition itself. Note

7

that Σ⊙ x̃ : σ̃ actually means Σ⊙ x1 : σ1 ⊙ · · · ⊙ xn : σn, which is then well
defined in case names in x̃ are not all distinct. Typed process may have
less transitions than the process itself:

First, not all process transitions are observable from outside (if it is one
end of a linear communication, or an ω-request whose receiver is also in the
process);

Second case is when the transition is not safe and must not be tested.

(This is the case for instance in a|b(x).x
b(a)

−−−−→ a|a.)
In the following definition, (νx̃)Σ is defined if ∀xi ∈ x̃, md(Σ(xi)) ∈

{⋆l, ↓ω, p}, and is then equal to Σ |dom(Σ)\x̃. The · operator used below is
based on the channel type operator defined as σ1 · σ2 = σ1 if σ1 = σ2, and
σ1 ⊙ σ2 otherwise.

Definition 2.3.1 (Type Consistency) The set S of (Σ;P) pairs (Σ be-
ing type mappings and P processes) is the smallest one generated from the
following rules.

(∅;0) ∈ S
If (Σi;Pi) ∈ S for both i = 1, 2, then
(Σ1 · Σ2;P1|P2) ∈ S,
((νa)Σ1; (νa)P1) ∈ S,
(Σ1; !P1) ∈ S.
Having σ = (σ̃)m: (a : σ↑ · x̃ : σ̃ · Σ1; a〈x̃〉.P1) ∈ S, and
((νx̃)

(

a : σ↓ · x̃ : σ̃ · Σ1

)

; a(x̃).P1) ∈ S.
∀Σ′ s.t. ∀x ∈ n(Σ′) : md(Σ′(x)) ∈ m⋆: (Σ1 · Σ

′;P1) ∈ S
We say that Σ is consistent for P when (Σ;P) ∈ S.

The definition for S is used to make sure the processes contain every
non-inert mode mentioned in the type, to prevent typings such as (l : ⋆l; l̄),
in which l’s input mode is not present in the process. Allowing any inert
mode is required for safety, for instance with processes such as l|l̄ −→ 0|0,
where l : ⋆l even after the transition.

Note that consistency is not preserved under τ -transitions. For instance
(u :↓ω;u.u) ∈ S but after two

u
−−→ transitions reduces to (u :↓ω;0) which is

not in S.
Any process may be typed in different ways. The differences arise from

the weakening rule (any inert type may be added to any name), from names
that are not used as channels (so neither the parameter types nor parameter
count can be inferred by examining the process) and by changing name
classes (for instance in x̄, x could be any of ↑l, ↑ω or p). It may be expressed
as follows:

8

The channel type definition is generalised to incomplete channel types
where an incomplete channel type σ is either a symbol τi, a complement
symbol τi or is of the form (σ̃)m where each σi is an incomplete channel type.
Such an incomplete channel type can be instantiated with {σ̃/̃τ} mapping
all τi symbols to regular channel types, simply replacing each τi by the
corresponding σi and τi by σi. Channel type mappings Σ are generalised
the same way.

We write T < Σ if there is Σ′ containing only inert modes, as well as a
mapping τ̃ 7→ σ̃ such that Σ = T{σ̃/̃τ} · Σ

′.
Σ being a type mapping and T an incomplete type mapping, we say that

Σ’s name classes matches those of T if there is no name shared by Σ and T
that is mapped to different classes (plain, ω or linear) by the two mappings.

Lemma 2.3.2 (Relating Consistent Types) Let (Σ;P) ∈ S.
Then there is an incomplete type mapping T whose name classes match

those of Σ and s.t. (Σ′;P) ∈ S where Σ′’s name classes match those of T if
and only if T < Σ′.

2.4 Template processes

To test processes that make requests to external ω-names we compose them
with generic contexts providing template inputs for the requested names.
The definition is as follows.

Definition 2.4.1 (Template Process) σ = (σ1 · · · σn)m being a channel
type, Lσ(a) is a process that provides an input or output at a, matching σ.

If m ∈ m⋆, Lσ(a) = 0.
If m =↑l, Lσ(a) = (νỹ) a〈ã〉.

∏

i Lσi
(ai), ỹ being the subset of ã with

mode p.
If m=↓l, Lσ(a) = a(ã).

∏

i Lσi
(ai), and

if m=↓ω, Lσ(a) = ! a(ã).
∏

i Lσi
(ai).

Two things are to be noted in the above definition.
First, being a recursive definition, it may define an infinitely nested pro-

cess. Even in the case of recursively defined types, it would not be possible to
use a recursive process and keep full generality. Consider a dialogue between
two processes, where exchanged names are only of two different types. Even
though there is a finite number of message types, the number of message
values is not bounded, and may not be modelled by a finite process.

9

Lemma 2.4.2 (Template Typing) σ being a channel type, we define Σ
so that for each plain type σ0 contained in σ at position ĩ and not itself

contained in another plain type, Σ(aĩ) = σ0. Then Tσ(a)
def
= a : σ ⊙ Σ is

an consistent type for Lσ(a)).

2.5 Observability

ω-names can be considered as a form of storage of immutable data in the
process. So we are going to define a generic representation of data stored in
a process, which allows to easily express our requirements.

The following is the grammar we are going to use to write the values of
this function. ξ ::= p

∣

∣ 〈ξ̃〉, where p is a name.
We define observability in two steps. We will first assume the pro-

cess does not depend on external resources to provide observable data,
and then generalise it for any process (like forwarders !u(x).v〈x〉, branches:
!u(x, y).(v〈x〉 | v〈y〉) or simple dependencies: l̄.! a | ! b(x).ā.x̄).

Definition 2.5.1 (Observability) Let (Σ;P) be a typed process and a a
name with Σ(a) = ((σ̃1)

m1 , · · · , (σ̃n)mn)m. The data directly observable at
a in P is ξ defined as follows.

If m ∈ m⋆ then ξ = 〈〉.

Otherwise, assume P
µ

==⇒ P ′ where µ is either a(x̃) or a〈x̃〉 depending on
m’s polarity. In case of input we set ∀i : xi = ai. Let P ′′

i = P ′ |
∏

j 6=i Lσj
(aj)

where σj = (σ̃j)
mj if µ is an input, (σ̃j)

mj otherwise. Then ξ = 〈ξ1 · · · ξn〉
where ξi (0 ≤ i ≤ n) is defined as follows.

if m ∈ m↑ and mi = p then ξi = ai,
if m ∈ m↑ and mi =↑ω then ξi = 〈〉,
if m ∈ m↑ and mi 6∈ m⋆ then ξi is the data directly observable at ai in

P ′′
i .

if m ∈ m↓ and mi ∈ m⋆ then ξi = 〈〉,
if m ∈ m↓ and mi 6∈ m⋆ then ξi is the data directly observable at ai in

P ′′
i .

If there is no such µ transition then ξ is undefined. On the other way
round if there are more than one such transition then ξ can have different
values.

Let r̃ = {r : md(Σ(r)) 6∈ m⋆}. Then ΩΣ
P (a) is the data directly observ-

able at a in process P |
∏

r∈r̃ LΣ(r)(r).

Note the use of indexed a as parameters. This is needed for processes
that return received names, like True(x) and False(x) (p. 3) for which the

10

data directly observable at x are 〈〈x2〉, 〈〉, 〈〉〉 and 〈〈x3〉, 〈〉, 〈〉〉. If a is itself
already indexed (say a = x1), then indexed forms of a are written with a
comma-separated sequence of indexes, for instance as in a2 = x1,2. When
computing ξi we compose the process with template processes for all other
parameters, to handle processes such as !u(x, y).y〈x〉, that query part of
the request when composing the reply. Similarly, external dependencies
are provided using template processes. Requests to external ω-names are
handled uniformly, as the replies are entirely determined by the channel
name (in P = a(x, y).b〈x〉|b〈y〉, assuming b has mode ↑ω, ΩΣ

P (a) contains
the same name twice: 〈〈b1,1〉, 〈b1,1〉〉).

Observability behaves according to our semantic definitions of name
classes:

• If a process may not depend on an external plain name to reply to
requests, due to the unreliable nature of plain modes. This is reflected
by the plain name template being equal to 0, i.e. ignoring all these
requests for obtaining observable data.

• Requests to external linear names are however accepted, as long as
a given name is used at most once. This is reflected in the template
process by having non-replicated inputs and outputs for linear names.
If the tested process attempts more than one request on the same
linear name then the second request will go unanswered, which, like in
the case of plain names above, makes the observable data undefined.

• Finally, requests to external ω-names are handled in a deterministic
and uniform way by template processes, as the replies are entirely de-
termined by the channel’s name and type. This is visible for instance
in process a(x, y).b〈x〉|b〈y〉, for which (assuming b has mode ↑ω) ob-
servable data at both a’s parameters is the same (〈〈b1,1〉, 〈b1,1〉〉).

2.5.1 Examples

Let Σ(a) = σ =

(

p, (p)↑l , (p)↓l ,
(

(p)↓l
)↑l

)↓ω

.

Let P be a process providing an input at a and such that Σ is consistent
for P . Then ΩΣ

P (a) will be of the form 〈〈〉, 〈〈〉〉, 〈x〉, 〈〈y〉〉〉.
For instance if P = ! a(p, b, c, d).

(

b(q) | c〈r〉 | d(l).l〈s〉
)

then a has an
observable value in P , which is ΩΣ

P (a) = 〈〈〉, 〈〈〉〉, 〈r〉, 〈〈s〉〉〉.
We consider that an output on an ω-name carries no information because

it is supposed to have no side effects on the input side. For example a value

11

associated with a channel of type σ =
(

(p)↓ω

)↑l
will always be 〈〈〉〉, and is

for instance observable at a in a(u).0 or in a(u).(u〈p〉|u〈q〉).
If P = Lσ(a), then ΩΣ

P (a) is of the form required by the type and in
contains only plain names like ai,...,j,k where the indexes specify the position
in the record. In this case:

P = ! a(a1, a2, a3, a4). (a2(a2, 1) | a3〈a3,1〉 | a4(a4,1).a4,1〈a4,1,1〉)

and

ΩΣ
P (a) = 〈〈〉, 〈〈〉〉, 〈a3,1〉, 〈〈a4,1,1〉〉〉

Observable data may come from three places: decided by the process
itself (x in the example below), delegated to a remote name (y) or bounced
from the parameters (z). The following example illustrates this.

Let σq =
(

(p)↓l
)↓l

σ′ =
(

(p)↓l , (p)↓l , (p)↓l , σq

)↓l
.

Now let Q = b(x, y, z, t).x〈p〉 | c〈y〉 | t〈z〉, in which b : σ′ and c : σ↑
q .

We then have ΩΣ
Q (b) = 〈〈p〉, 〈c1,1〉, 〈b4,1,1〉, 〈〈〉〉〉.

2.6 Bisimilarity

We are now going to define a bisimilarity relation on (typed) processes.
There are two applications for this.

One, which is the main contribution of this paper, is that a bisimi-
larity relation allows validating calculus encodings using a full abstraction
property. Indeed, the usual weak bisimilarity relation would be too strong
because it allows observing the details of data decoding protocols.

Additionally, such a relation allows to define discreetness easily: We
express the absence of side effects caused by a request on a reserved name
as bisimilarity of the processes before and after the request.

We restrict ourselves to S (see Definition 2.3.1) because inconsistent
types may prevent some transitions to be tested, thereby wrongly seeing
two processes as bisimilar. For instance P0 = a〈x̃〉.P , where P is any pro-
cess with x 6∈ fn(P).

When this process is associated with the types a :
(

()↑ω

)p

and x : ()↓ω ,

the transition P0
a〈x̃〉

−−−−→ P would not be tested, and as we will see in the
definition for discreet processes, any process of this form would then be
considered discreet.

12

Definition 2.6.1 (Discreet Bisimulation) A symmetric relation R on S
is a discreet bisimulation if (ΣP ;P)R(ΣQ;Q) implies the following.

Below, p, l and u respectively have a plain, linear and ω-mode in the
corresponding type mapping. a ∈ dom(ΣP) ∩ dom(ΣQ) implies ΣP (a) and
ΣQ(a) have the same class.

1. If (ΣP ;P)
µ

−−→(Σ′
P ;P ′) and µ∈{τ, p(x̃), (ν z̃) p〈x̃〉, l(x̃), (ν z̃) l〈x̃〉} then

∃µ′ ≡ µ s.t. (ΣP ;P)
µ′

−−→ (Σ′′
P ;P ′′), (ΣQ;Q)

µ̂′

==⇒ (Σ′
Q;Q′) and

(Σ′′
P ;P ′′)R(Σ′

Q;Q′).

2. (P ; ΣP)
u(x̃)

−−−−→ (Σ′
P ;P ′) implies:

• (Σ′
P ;P ′)R(Σ′

P ;P ′),

• ∃!ξ s.t. ΩΣ
P (u) = ξ, and

• (ΣP ;P)R((ν x̃)Σ′
P ; (νx̃)P ′),

• (ΩΣ
P (u) = ξ) ⇒ (ΩΣ

Q (u) = ξ).

3. ∀u : σ = ΣP (u) and md(σ) =↑ω implies:

((νu) (Tσ(u) ⊙ ΣP); (νu) (Lσ(u) |P)) R(ΣQ, Q).

The discreet bisimilarity relation ≈R on S is the largest discreet bisimu-
lation.

Point 1 is a standard requirement of a weak bisimulation but only tests
plain and linear channels.

Point 2 says the following, for any available ω-server:

• The process remains discreet after having accepted an ω-request.

• If a decoding request is accepted then it has to be replied determinis-
tically.

• Data decoding has no side effect and is uniform.

• Both processes provide the same data on a given ω-name.

Finally, point 3 tests ω-requests to the environment. We use template
processes to ensure that all requests on the same ω-name receive the same
answer, to allow processes like u(νx).(P | Q) and u(νx).P | u(νx).Q to be
bisimilar. Note that ω-requests by themselves being without side effects,
whether a request is sent or not has no effect on bisimilarity, for instance we
have (u :↑ω; ū) ≈R (∅;0).

13

Lemma 2.6.2 Let relations R1 and R2 be discreet bisimulations.
Then both Rσ = R1 ∪ R2 and Rπ = R1R2 ∪R2R1 are discreet bisimu-

lations as well.

Note that R1 and R2 being bisimulations usually does not imply that
R1R2 is, because symmetry is usually not preserved by composition.

It is however not a bisimilarity in the strict sense of the term because
it is not reflexive — there are some processes that are not bisimilar to any
other processes, not even themselves. This prompts for the following:

Definition 2.6.3 (Discreetness) P is said Σ-discreet if (Σ;P)≈R (Σ;P).

On Σ-discreet processes, ≈R is an equivalence relation. P ≈ Q implies
(Σ;P) ≈R (Σ;Q) but the opposite direction usually does not hold. Consider
the following pair (a, w and w′ are plain, x is ω and both v and v′ are linear)

P = a(x).
(

x(νv).v(w).w | x(νv).v′(w′).w′
)

,
Q = a(x). x(νv).v(w).(w|w).
Consider the following transitions, available in sequence from P :

a(b)
−−−−→

b(νv)
−−−−−→

v(w1)
−−−−−→

b(νv′)
−−−−−→

v′(w2)
−−−−−→

w1
−−−→

w2
−−−→.

Plain outputs observed at the end may differ in P , but must be identical
in Q:

a(b)
−−−−→

b(νv)
−−−−−→

v(w1)
−−−−−→

w1
−−−→

w1
−−−→

No such difference can be observed with discreet bisimulation, as ω-
requests are not tested directly but by inserting a template process.

In the following lemma, a context type is an expression generated by the
following grammar, Σ being a regular type mapping and x a name.

K ::= [·]
∣

∣ K · Σ
∣

∣ K \ Σ
∣

∣ (νx)K.
Such a context type is typically checked against a process context C[·]

starting from ([·]; [·]) as the most basic typed context, and then following
the rules given in Definition 2.3.1.

Lemma 2.6.4 (Bisimulation Congruence) Let (ΣP , P) ≈R (ΣQ, Q).
If (Σ[·];C[·]) is a typed context s.t. both (Σ[ΣP], C[P]) and (Σ[ΣQ], C[Q])

are discreet, then (Σ[ΣP], C[P]) ≈R (Σ[ΣQ], C[Q]).

Examples

We show how some non-discreet processes (failing the requirements given in
introduction) are not discreet bisimilar with themselves.

14

They will all be processes of the form P = a〈u〉.P ′ where P ′ listens on u
(i.e. u should be thought as the encoding of the value transmitted over a).

We have P
a〈u〉

−−−−→ P ′.
In the following, p 6= q, p, q, a, s have mode p, l has a linear mode and u

has mode ↓ω. The examples are numbered to match section 1’s requirements.

1. “Once sent, the transmitted data is fully determined.”

P ′ = (νt) (t̄|t.!u(l).l〈p〉|t.! u(l).l〈q〉)

As P ′ u(x)
−−−−→

x〈p〉
−−−−→, ΩΣ

P ′ (u) = 〈p〉. We also have P ′ u(x)
−−−−→

x〈q〉
−−−−→, so

ΩΣ
P ′ (u) = 〈q〉 6= 〈p〉, which breaks last point of Definition 2.6.1’s item

2. So P ′ 6≈R P ′, and (by item 1) P 6≈R P .

2. “the receiver can access it arbitrarily often and always gets the same
result”

P ′ = u(l).(l〈p〉 | !u(l).l〈q〉)

We have P ′ u(x)
−−−−→ P ′′ = x〈p〉 | !u(l).l〈q〉.

Because P ′′ x〈p〉
−−−−→, ΩΣ

P ′ (u) = 〈p〉, and because (νx)P ′′ u(y)
−−−−→

y〈q〉
−−−−→,

ΩΣ
(νx) P ′′ (u) = 〈q〉. So P ′ 6≈R (νx)P ′′, which breaks the second point

of requirement 2, so P 6≈R P .

3. “The sender can’t know when and how many times the data is ac-
cessed”

P ′ = !u(l).(l〈p〉 | s̄)

This example sends a signal at each decoding request. P ′ u(x)
−−−−→ P ′′ =

!u(l).(l〈p〉 | s̄) | x〈p〉 | s̄. As before, P ′ 6≈R P ′′:

(νl)P ′′ s̄
−−→ but not P ′ s̄

−−→. so P 6≈R P .

4. “A decoding request is always replied to after a finite time”

P ′ = !u(l).0

There is no z such that P
a〈u〉

−−−−→ P ′ u(x)
−−−−→

x〈z〉
====⇒, so ΩΣ

P ′ (u) is unde-
fined (which breaks second point of requirement 2), and P 6≈R P .

15

3 Type System

In this section we propose a type system that analyses the behaviour of a
process.

We will first define various formalisms and operators that will be required
by the type system.

3.1 Receptiveness and Responsiveness

We distinguish receptiveness and responsiveness. The former stands for
availability of input (or output) at a name, but provides no guarantees as
to requests being replied.

A channel is said input responsive if the answer to a request depends
at most on the request parameters. It is output responsive if the request’s
parameters depend at most on the reply. Output responsiveness only makes
sense for linear channels, for which precisely one request is expected.

For example, in ! a(x).b̄.x̄ a is receptive but depends on b’s receptiveness
to be responsive.

3.2 Protocols

In a communication, there can be various conventions relating to which end
should provide its parameters first. Examples include:

• Anarchy — No assumption can be done concerning the other end,
which means that we may not make our parameters depend on the
remote side.

• Input First — the input side must provide receptiveness on all its
parameters without depending on receptiveness from the output side.
Recursively, parameters follow the same convention. For instance, in
u〈x, y〉.! y(t, u).P , y must become receptive without depending on x
(being an output parameter), however it may wait for the other end
to become responsive before providing its own resources at t and u, as
y itself is an input.

• Left to Right — Receptiveness or responsiveness on a parameter may
only depend on parameters on its left.

Instead of choosing one particular convention, we decided to leave it
open, and allow encoding any of them as a protocol, which is defined us-
ing dependencies between parameters. Then, when typing a process, we
associate protocols to channel types.

16

A protocol is defined using dependencies between resources related to
the parameters.

A parameter resource r is one of i↓, i↑ ,̌ı or ı̂, where i is a number
specifying which parameter is being talked about. r̄ is defined as follows.
i↓ = i↑, ı̌ = ı̂, i↑ = i↓ and ı̂ = ı̌

Definition 3.2.1 (Protocol) A protocol ρ for a type (σ1 · · · σn)m is an
irreflexive transitive relation written <ρ on {i↓, i↑, ı̌, ı̂ : 1 ≤ i ≤ n}, and a
sequence ρ1 . . . ρn, where ρi is a protocol for type σi called ρ’s sub-protocol
for parameter i.

The complement protocol ρ̄ is s.t. r1 <ρ r2 ⇐⇒ r1 <ρ̄ r2 and (ρ̄)i = ρi.

r1 <ρ r2 means the end providing r2 may wait for r1 before providing it.
More precisely:
Consider a communication a(ỹ).I | a(νx̃).O.
Parameter resources with the up arrow indicate those (which may or

may not be outputs) that O is expected to provide and those with the down
arrow must be provided by I.

When checking compliance of a process to a communication protocol ρ,
we model the behaviour of the other end assuming it is going to provide its
resources as late as allowed by the protocol. In other words r1 6<ρ r2 means
r2’s provider must not depend on r1 for it.

This guarantees that the composition of two protocol-compliant pro-
cesses is not going to generate deadlocks. If, instead, we had considered
the remote side to provide resources as early as allowed by the protocol, a
weakly-defined protocol (such as the Anarchy described above) would allow
any behaviour both on input and on output side, which, when combined,
may create a deadlock.

The complement protocol does has the same sub-protocols for the same
reason the complement of a channel type has the same parameter types:
because like channel types a protocol is by convention at the input’s point
of view, and the complement is the same but from output’s point of view.
In both cases description of the parameters is always from the input’s point
of view.

Examples

Consider the type σ = (↓l, ↑l)
↓l .

As the parameters don’t themselves carry parameters, the two sub-
protocols will always be empty.

17

We use the following notation to describe orderings: R and S being
resource sets, R 7→ S is the smallest relation < such that ∀r ∈ R : ∀s ∈ S :
r < s.

The corresponding anarchic protocol ρa is such that <ρa= ∅, i.e. an
empty relation expressing the lack of guarantees on the remote side’s be-
haviour.

The “input fully responsive first” protocol ρi is defined such that <ρi=

{1↓, 1̌, 2↓, 2̌} 7→ {1↑, 1̂, 2↑, 2̂}.
The following protocol requires all parameters to be fully receptive, and

then to become fully responsive. It is interesting for modelling dialogue-
type interactions, where each end does one step and then waits for the
remote end to provide the next step, before continuing. ρs is such that
<ρs= {1↓, 1↑, 2↓, 2↑} 7→ {1̌, 1̂, 2̌, 2̂}

3.3 Action Types

Action types are defined following [YBH04], as a set of channel types to-
gether with causality information. We don’t think as a graph but rather as
a set of dependencies on resources but this point of view is equivalent.

Definition 3.3.1 (Resources) A resource is one of x, x̌, x̂, (x̃), where x
is a name and x̃ a set of names.

A resource is something that can be depended on. The four above cases
are respectively receptiveness (both input and output) at x, input respon-
siveness, output responsiveness, and a dependency group. The exact seman-
tics of dependency groups will be discussed when introducing action type
composition.

Definition 3.3.2 (Extended Channel Type) Let σ be a channel type, ρ
be a protocol, α̃, β̃ and γ̃ be possibly empty sets of resources respectively
called the receptive, input responsive and output responsive conditions.

An Extended Channel Type is a structure of the following form:

(σ, ρ, α̃, β̃, γ̃)

When σ has a plain mode, all conditions are empty sets, and when σ has
an ω-mode, output responsive conditions is an empty set.

This structure describes what a process provides at a name, and under what
conditions. For instance the name is receptive once α̃ are all available, and

18

(provided σ is an input) is input responsive once β̃ are available. We omit
the last components of the type if they are empty. For instance (σ, ρ, α̃)
stands for (σ, ρ, α̃, ∅, ∅).

Definition 3.3.3 (Action Type) An Action Type is a mapping of names
to extended channel types.

We define for an action type A the following functions:

• The channel type mapping :

ΣA (a) = σ iff ∃ρ, α̃, β̃, γ̃ | a : (σ, ρ, α̃, β̃, γ̃) ∈ A.

When a 6∈ dom(A), ΣA (a)
def
= ǫ.

• Dependency graph: 7→A is a relation between resources based on names
in dom(A), and such that, having A(x) = (σ, ρ, α̃, β̃, γ̃), (z 7→A x) if
z ∈ α̃, (z 7→A x̌) if z ∈ β̃ and (z 7→A x̂) if z ∈ γ̃. Also, r 7→A β implies
r 7→A (x̃) if n(β) ∈ x̃.

There are two Action Type composition operators, a simple merging
operator A + B and the actual composition operator A ⊙ B.

Merging is used when explicitly building an action type, where we do
not need (or want) dependency tracking.

Definition 3.3.4 (Action Type Merging) The merging of two action
types A1 and A2, written A1 + A2, is defined as follows.

Let X = A1 + A2. dom(X) = dom(A1) ∪ dom(A2).
Assuming Ai(x) = (σi, ρ, α̃i, β̃i, γ̃i) (i = 1, 2),
X(x) = (σ1 ⊙ σ2, ρ, α̃1 ∪ α̃2, β̃1 ∪ β̃2, γ̃1 ∪ γ̃2).
The composition is not defined if one of the above is not defined (i.e. if

a given name is in both Ai with uncomposable channel types)
∑

i Ti
def
= T1 + T2 + · · · , with the convention that

∑

i∈∅ Ti = ∅.

We will now lift the definition of ⊙ to Action Types, where it is (amongst
others) used when parallel-composing two processes.

Definition 3.3.5 (Implied Dependency) In the following, A(i) means
A1 if i is odd and A2 otherwise.

A pair q 7→ r is an implied dependency between two action types A1 and
A2 iff there is a sequence q = r1, r2 . . . , rn = r (n > 2) s.t. both

1. (∀i : ri 7→A(i)
ri+1) or (∀i : ri−1 7→A(i)

ri)

19

2. Let z̃i = ã when ri is of the form (ã) and ∅ otherwise. Then (
⋃

i z̃i) ∩
(
⋃

i n(ri)) = ∅

Note that a dependency entirely contained in either of the two action
types is in general not an implied dependency because of the constraint
n > 2.

Definition 3.3.6 (Action Composition) The Action Type composition
of two action types A1 and A2, written A1 ⊙ A2, is defined if there is no r
such that r 7→ r is an implied dependency of A1 and A2, and if A1 ⊙ A2 is
defined. Then,

A1 ⊙ A2 is equal to A1 + A2, to which are added dependencies that are
implied by A1 and A2

Note that we only check for circularities on implied dependencies, which
means that composition only fails when it creates a circular dependency, not
if one was already present in either action types.

Precedence: A + B ⊙ C = (A + B)⊙ C and A⊙ B + C = A⊙ (B + C).
The process constructors such as repliction, restriction and prefixing are

adapted to action types as operators.

Definition 3.3.7 (Action Type Replication) !A is defined if and only
if all names in A have a mode in {↓ω0 , ↑ω, p}, and1 md(ΣA (x)) =↓ω0⇒ ∄r :
r 7→A x. Then:

dom(!A)
def
= dom(A), and assuming A(a) = (σ, ρ, α̃, β̃, γ̃), we have

(!A)(a) = (!σ, ρ, α̃, β̃, γ̃), where

! (σ̃)↓ω0
def
= (σ̃)↓ω , ! (σ̃)p

def
= (σ̃)p and ! (σ̃)↑ω def

= (σ̃)↑ω .

Similarly to [YBH04] we put some conditions on restricting names: for
restricting a linear name we require to be both input and output, and for
restricting an ω-name we require it to be listened in the restriction.

Definition 3.3.8 (Action Type Restriction) Restricting a name x in
an action type (written (νx)A) is defined if and only if md(ΣA (x)) ∈ m⋆,
and when defined removes all x from the action type. Using X = {x, x̌, x̂},

dom((νx)A)
def
= dom(A) \ x.

A(a) = (σ, ρ, α̃, β̃, γ̃) (a 6= x) implies ((νx)A)(a) = (σ, ρ, α̃\X, β̃ \X, γ̃ \
X).

1Allowing conditions for ↓ω would break subject reduction because though !P |!P ∼ !P

we do not allow more than one input on an ω-name. Allowing conditions for ↓ω0
would

allow “guarded uniformity”, i.e. processes like ! a.b where a and b would both be ω

20

Definition 3.3.9 (Action Type Prefixing) Prefixing an action type A
with a resource r of type σ (written (r : σ).A or just r.A if the type is
unimportant or clear from context) is defined as follows.

dom(r.A) = dom(A)
Let A(a) = (σa, ρ, α̃, β̃, γ̃).
If σa = (σ̃)↓ω and md(σ) = p then σ′

a = (σ̃)⋆ω . Otherwise σ′
a = σa.

If both md(σa) and md(σ) are in mr, then α̃′ = {r} ∪ α̃, otherwise
α̃′ = α̃.

Then, ((r : σ).A)(a)
def
= (σ′

a, ρ, α̃′, β̃, γ̃).

Notation: abc.A stands for a.b.c.A.
Plain-prefixing an ω-input makes it uncomposable because in a process

like a〈u〉.! u, u is not guaranteed to ever become available and no request to
u may be sent from outside the plain prefix.

The side conditions are needed to ensure non-linear resources neither
depend on a resource, nor are depended upon.

The type system proposed at next section is a weak one, in the sense
that a given process can be typed in different ways. This is needed to have
a strong safety theorem, i.e. if a A types a process P then any reduction P ′

of P (i.e. P =⇒ P ′) can also be typed by A.
Through reduction, dependencies due to over-approximation disappear,

inert resources get consumed and ω-inputs marked uncomposable become
composable if the plain prefix is consumed. Weakening allows reverting
these changes.

Definition 3.3.10 (Action Type Weakening) We say A′ is a weaken-
ing of A (A ≤ A′) if dom(A) ⊆ dom(A′), and:

• ∀a ∈ dom(A), let A(a) = ((σ̃)m , ρ, α̃, β̃, γ̃). Then

A′(a) = ((σ̃)m
′

, ρ, α̃′∪ α̃, β̃′∪ β̃, γ̃′∪ γ̃) s.t. either (m = m′) or (m =↓ω

∧m′ = ⋆ω). As usual, α̃′, β̃′ and γ̃′ must all be linear resources.

• ∀a ∈ dom(A′) \ dom(A): md(ΣA′ (a)) ∈ m⋆.

We may now define instantiation of a protocol. Just as a parameter
types in a channel type refer to the input’s point of view (as to what the
output is expected to provide), a protocol instantiation provides the input’s
point of view as to what the output may require to provide its parameters.
Instantiating the protocol for the output’s point of view is done on the
complement protocol ρ̄.

21

Definition 3.3.11 (Protocol Instantiation) The instantiation of a pro-
tocol ρ with parameters x̃ of type σ̃, written ρ(x̃ : σ̃), gives the action type
defined as follows.

In the following, x′
j =

{

x̌j if md(σj) ∈ {↓l, ↓ω}
x̂j otherwise

.

ρ(x̃ : σ̃)
def
=

∑

i xi : (σi, ρi, α̃i, β̃i, γ̃i) where:
If md(σi) ∈ {p, ↑ω} then α̃i = β̃i = γi = ∅.
Otherwise, having j 6= i:
xj ∈ α̃i ⇐⇒ i↑ 6<ρ j↓

x′
j ∈ α̃i ⇐⇒ i↑ 6<ρ ̂

xj ∈ δ̃i ⇐⇒ ı̌ 6<ρ j↓

x′
j ∈ δ̃i ⇐⇒ ı̌ 6<ρ ̂

If md(σi) ∈ {↓l, ↓ω} then β̃i = δ̃i and γ̃i = ∅.
If md(σi) =↑l then β̃i = ∅ and γ̃i = δ̃i.
Instantiation is undefined in case it results in a resource depending on

itself.

Just as a parameter types in a channel type refer to the input’s point of
view (as to what the output is expected to provide), a protocol instantiation
provides the input’s point of view as to what the output may require to
provide its parameters. Instantiating the protocol for the output’s point of
view is done on the symmetric protocol ρ̄.

Examples

As before we work on the type σ = (↓l, ↑l)
↓l .

As a first example, let ρa be the anarchic (empty) protocol.
Then, ρa(x :↓l, y :↑l) = {x : (↓l, ∅, yŷ, yŷ); y : (↑l, ∅, xx̌, ∅, xx̌)}
Because r1 6<ρa r2 for any r1 and r2, all possible dependencies are put in

the resulting action type. The apparent circular dependencies (for instance
we have x 7→ y 7→ x) are put in place to prevent composing with any local
inter-parameter dependency. More specifically, the action type will compose
with a type of process x̄|y but not with either x̄.y or y.x̄.

If in this example, y = x, however, the instantiation is no longer defined
because it would result to ρa(x :↓l, x :↑l) = E = {x : (⋆l, ∅, xx̂x̌, xx̂x̌)}
where for instance x 7→E x.

If we use the “output fully responsive first” protocol, we simply get
ρo(x :↓l, y :↑l) = {x :↓l; y :↑l}. The remote parameters are created with
no dependencies, to allow the local (input) resources to fully depend on the
remote one.

22

−

∅ ⊢ 0
(Nil)

A ⊢π P A ≤ A′

A′ ⊢π P A′ ⊢p P
(Weak)

A ⊢π P

!A ⊢π !P
(Rep)

i = 1, 2 : Ai ⊢π Pi

A1 ⊙ A2 ⊢π P1 | P2
(Par)

A ⊢π P

(νx)A ⊢π (νx)P
(Res)

Table 2: Type System — Basic Rules

One last example, consider the protocol “parameters made available from
left to right” ρ→, based on {1↓, 1↑, 1̌, 1̂} 7→ {2↓, 2↑, 2̌, 2̂}. Here the instantia-
tion gives ρ→(x :↓l, y :↑l) = {x :↓l; y : (↑l, ∅, xx̌, ∅, xx̌)}.

The x 7→ y dependencies are put in place to prevent the local resources
to have a dependency such as y 7→ x, so that an input continuation such as
x̄|y or x̄.y would be accepted, but not y.x̄.

3.4 Determinism rules

In addition to relating a process to an action type, typing judgements also
specify whether a process might use a plain name as a channel. The reason
why we don’t express this as an action mode is that this information is
needed even if the plain name is bound, as in l(p).p.

A ⊢ P means P behaves according to the action type A, and will not
use any plain name as a channel.

A ⊢p P means P behaves according to the action type A, and may use
a plain name as a channel.

A ⊢π P means π = p ⇒ A ⊢p P , and π 6= p ⇒ A ⊢ P .
We now have all the material to write the rules of the type system, given

in Tables 2 and 3.
The weakening rule allows either weakening just the action type and

keeping π, or also replacing a A ⊢ P by A ⊢p P .
Composing A ⊢ P and B ⊢p Q with the parallel composition rule is

done by first (weak)-ening A ⊢ P to A ⊢p P (this is required by (Par) to
have a single π value)

All prefix rules are essentially the same.
We first state that the channel is immediately receptive, and for respon-

siveness depends on what its parameters depend.
Then we add the remote parameters with the + operator by instantiat-

ing the protocol. The reason for not using ⊙ is that it would create fake
dependencies. For example, consider a linear input l(x).P . l’s type is set

23

A ⊢π P ∀l : md(ΣA (l)) 6∈ {↓l, ↑l, ↓ω0}

p.(νx̃) (p : ((σ̃)p , ρ) + ρ(x̃ : σ̃) ⊙ A) ⊢p p(x̃).P
(Inpp)

A ⊢π P

(νx̃)
(

l : ((σ̃)↓l , ρ, ∅, (x̃)) + ll̂.ρ(x̃ : σ̃) ⊙ l.A
)

⊢π l(x̃).P
(Inpl)

A ⊢ P

(νx̃)
(

u : ((σ̃)↓ω0 , ρ, ∅, (x̃)) + u.ρ(x̃ : σ̃) ⊙ u.A
)

⊢ u(x̃).P
(Inpω)

A ⊢π P ↑ω 6∈ md(σ̃) ∀l : md(ΣA (l)) 6∈ {↓l, ↑l, ↓ω0}

p.
(

p : (
(

σ̃
)p

, ρ) + ρ̄(x̃ : σ̃) ⊙ A
)

⊢p p〈x̃〉.P
(Outp)

A ⊢π P

l : (
(

σ̃
)↑l , ρ, ∅, ∅, (x̃)) + lľ.ρ̄(x̃ : σ̃) ⊙ l.A ⊢π l〈x̃〉.P

(Outl)

A ⊢π P

u : ((σ̃)↑ω , ρ) + uǔ.ρ̄(x̃ : σ̃) ⊙ u.A ⊢π u〈x̃〉.P
(Outω)

Table 3: Type System — Input/Output

to have (x) 7→ ľ. Then, protocol instantiation will add a dependency l̂ 7→ x
(because the remote parameter depends on output responsiveness). If ⊙
were used then input responsiveness would wrongly depend on output re-
sponsiveness. A similar situation would happen on the output side, and we
would obtain a dependency loop like ľ 7→ l̂ 7→ ľ. Intuitively the idea is that
local responsiveness should not be expanded with dependencies on remote
parameters but only local ones, which is why it is not ⊙-composed with
protocol instantiation.

Finally continuation is composed with the resulting action type, after
adding to it a dependency on receptiveness of the channel.

Restricting parameters in input rules has two purposes. First, it makes
sure the parameters won’t be visible in the resulting action type, as only
complete modes can be restricted. Second, it makes sure the continuation A
has provided required resources (e.g. for a linear parameter, one polar will
be provided by the remote end and A must provide the other one so that
they combine into ⋆l which can be restricted.)

Plain prefix rules force the resulting judgement to record a plain in-
teraction, while ω-input requires the continuation not to contain any plain
interaction.

24

Note that the action type prefixing on the channel is done outside for
plain names. The reason is that when σ has mode p, ((p : σ).A)⊙((p : σ).B)
is in general not equal to (p : σ).(A ⊙ B) in case there is a communication
over an ω name happening between A and B. This is because plain prefixing
changes ↓ω modes into ⋆ω, to express the fact that communicating with a
plain prefixed ω input is not reliable and should be blocked. However, it is
reliable when the ω name is a parameter, and the input is provided in the
output continuation, as in (p(x).x̄) | (p〈u〉.! u). We do not put the prefixing
operator on the outside in the other rules to avoid having the channel depend
on itself.

The ↑ω 6∈ md(σ̃) side condition of the plain output is used to prevent
processes such as (νp) (p(x).! x(y).y〈q〉 | p(x).! x(y).y〈q′〉 | p〈u〉) which is not
discreet as ΩP (u) can be either 〈〈q〉〉 or 〈〈q′〉〉.

Parameters with linear modes are restricted for transmission over plain
channels the following way:

p(l), where p is plain and l either ↓l or ↑l can’t be completed by the
continuation, and the incomplete mode can’t be restricted in the input rule.

p〈u〉, where u is ↑ω, is rejected, by the special side condition in (Outp).
Both p(u) and p〈u〉.P , where u is ↓ω is accepted, but the u name won’t

be usable outside of the prefix, as the communication is not guaranteed.
This is enforced by the action type prefixing operator setting the mode to
⋆ω.

The type system does allow processes like p〈l〉 | l, but these may not be
used in any way, as no typable context may provide a corresponding input.
Same for processes like p(u).!u.

Other linear interactions crossing the boundary of a plain prefix (on
names different from the parameters) are restricted in the same way.

Plain interactions in ω-input continuations is prevented by the (Inpω)
requiring a “A ⊢ ”-typing for the continuation.

3.5 Example

This is an example of an ω-server that provides a linear input at its param-
eter.

Consider !u(x).x | u〈l〉.l, where l abbreviates of l〈〉.0. This process can

be typed using u : σu =
(

()↑l
)↓ω

and l : ()⋆l, and the (“anarchic”) protocol

ρ = ∅.
We start with (Nil): ∅ ⊢ 0, which is passed as a premise to (Outl),

yielding

25

l : ()↑l + lľ.∅ ⊙ l.∅ ⊢ l〈〉.∅

i.e. l :↑l ⊢ l, which in turn is passed to (Outω):

u :
(

()↑l
)↑ω

+ uǔ.ρ̄(l :↓l) ⊙ u.l :↑l ⊢ u〈l〉.l

Applying the empty protocol ρ̄ = ∅ to l :↓l we get simply l :↓l. (As
protocol instantiation only creates inter-parameter dependencies, the one-
parameter case will never create any dependency.) Evaluating the prefixes
and the + operator:

{

u :
(

()↑l
)↑ω

; l : (↓l, ∅, uǔ)

}

⊙ l : (↑l, ∅, u) ⊢ u〈l〉.l

As there is no implied dependency, ⊙ behaves as +. Note that ↓l and
↑l get composed into ⋆l. The shortest typing for this process is then

{

u : (↑l)
↑ω ; l : (⋆l, ∅, uǔ)

}

⊢ u〈l〉.l (1)

The dependencies on l show that for this channel to reach completeness
we will need a responsive input at u. It is required for an input at l to be
available.

The input x is typed using (Inpl) similarly to l: x :↓l ⊢ x.
We type the left hand side of our process using (Inpω).

(νx)
(

u : ((↑l)
↓ω0 , ∅, ∅, (x)) + u.ρ(x :↑l) ⊙ u.x :↓l

)

⊢ u(x).x

Instantiating the protocol, applying the prefixes and the +.

(νx)
({

u : ((↑l)
↓ω0 , ∅, ∅, (x));x : (↑l, ∅, u)

}

⊙ x : (↓l, ∅, u)
)

⊢ u(x).x

Applying the remaining ⊙. As (x) 7→ ǔ on the left side and u 7→ x on
the right side, we get u 7→ ǔ as an implied dependency:

(νx)
{

u : ((↑l)
↓ω0 , ∅, ∅, (x)u);x : (⋆l, ∅, u)

}

⊢ u(x).x

Applying the restriction is well-defined because x has the complete mode
⋆l:

u : ((↑l)
↓ω0 , ∅, ∅, u); ⊢ u(x).x

26

The corresponding type for the replicated process is

u : ((↑l)
↓ω , ∅, ∅, u); ⊢ !u(x).x

which we can compose with (1), getting the following action type:

{

u : ((↑l)
↓ω , ∅, ∅, u)

}

⊙
{

u : (↑l)
↑ω ; l : (⋆l, ∅, uǔ)

}

The composition operators defines ↓ω ⊙ ↑ω=↓ω:

u : ((↑l)
↓ω , ∅, ∅, u); l : (⋆l, ∅, uǔ)

All dependencies may be removed as u is complete, giving us the final
typing

u : (↑l)
↓ω , l : ⋆l ⊢ !u(x).x | u〈l〉.l

3.6 Properties

3.6.1 Convention

In all the following lemmas, properties and theorems we will assume the
typing of processes mentioned in the statements do not contain any name of
mode ↓ω0 , i.e. that each ω name has been replicated. It is indeed possible
to build broken (but typable) processes such as (u | ū.ū.l) where u is ↓ω0

and l is ↓l. This process is broken in that it can’t be extended to have u
become ↓ω, and in this form the l input can’t happen. This is why none of
the theorems apply to such a process.

We have the following properties.

Lemma 3.6.1 (Names) If A ⊢π P then dom(A) ⊇ fn(P) and ∃A′ ≤ A
with A′ ⊢π P and dom(A′) = fn(P).

The following Lemma expresses the fact that each typable process has
one “strongest” type A′.

Lemma 3.6.2 (Strongest Type) Let A ⊢π P . Then there is A0 s.t. ∀A′,
A′ ⊢π P iff A0 ≤ A′.

Lemma 3.6.3 (Decidability) The typability of any (finite) process P (i.e.
whether ∃A : A ⊢p P) is decidable, and for any A, P and π, whether A ⊢π P
holds is decidable as well.

Moreover there is a linear time algorithm for determining the strongest
type for any (finite) process.

27

The following safety proposition only tests transitions available both in
the process and in the action type. Transitions unavailable in the action
type would not be available in a typable environment, and would render the

resulting process untypable as well (for instance l(x).x | l′
l(l′)

−−−−→ l′|l′).

Proposition 3.6.4 (Type Safety) Let A ⊢π P and (ΣA;P)
µ
−−→ (Σ′;P).

Then there is an action type A′ s.t. A′ ⊢π P ′ and ΣA′ = Σ′. If µ = τ then
A = A′.

When outputting a bound name or inputing a name, it must appear in
the resulting action type, with the correct channel type.

Lemma 3.6.5 (Type Soundness) Let A ⊢π P and a ∈ dom(A) s.t. ∄r :
r 7→A a. Let ΣA (a) = (σ̃)m. Then:

• If m =↑l then there is P ′ with P
(νz̃) a〈x̃〉

=======⇒ P ′

• If m =↓l then there is P ′ with P
a(x̃)

====⇒ P ′

• If m =↓ω then there is P ′ with P
a(x̃)

====⇒ P ′

The proof is in section 4.5.

Lemma 3.6.6 (Consistency) If A ⊢π P then ΣA is consistent for P .

Proposition 3.6.7 (Discreet Soundness) Let A ⊢π P .
Then P is ΣA-discreet.

I.e. the type system is a characterisation of discreetness. The proof is
in Section 4.8

4 Proofs

4.1 Notation

We introduce some additional notation that will be used for the proofs.
Template processes are generalised to type mappings:

L(Σ)
def
=

∏

a∈dom(Σ)

LΣ(a)(a)

28

4.2 Congruence

Let (ΣP , P) ≈R (ΣQ, Q).
If (Σ[·];C[·]) is a typed context s.t. both (Σ[ΣP], C[P]) and (Σ[ΣQ], C[Q])

are discreet, then (Σ[ΣP], C[P]) ≈R (Σ[ΣQ], C[Q]).
This is proven by induction on C[·]

4.2.1 Bisimilarity Preservation (Lemma 2.6.2)

Rσ (Union):
Let PRσQ. Then PRiQ with i = 1 or i = 2. All conditions on Rσ

(including symmetry) being existential (of the form “if P
µ
−−→ P ′ then there

are R and S such that RRσS” with some conditions on R and S), they
holding on Ri implies them holding on Rσ as well.

Rπ (Composition):
Symmetry: Let ARπB. Then AR1R2B or AR2R1B, i.e. ∃X s.t. either

AR1X and XR2B, or AR2X and XR1B.
By symmetry of both Ri, we either have BR2X and XR1A or BR1X

and XR2A , i.e. BR2R1A or BR1R2A. So BRπA.
We now show that, except symmetry, all conditions defining a bisimula-

tion are preserved for both R1R2 and R2R1. The proof for Rσ can then be
adapted for their union.

τ transitions are preserved by transitivity of =⇒.

For µ 6= τ transitions, A
µ
−−→ A′ is matched by the first bisimulation as

X
µ

==⇒ X ′, which is matched by the second as B =⇒
µ

==⇒ =⇒ B′.
Observable value preservation is immediate, combining ΩA (x) = ΩX (x)

and ΩX (x) = ΩB (x).
Other requirements apply on a single side of the relation at a time, i.e.

are of the form “PRQ implies pr(P) and (by symmetry) pr(Q)” (for some
property pr). So, having ARπB and let X be the intermediary process as
above, we get pr(A), pr(X) and pr(B).

4.3 τ-Safety

Action Types constructed by the type system are of the form A1⊙A2⊙· · ·An

where no ⊙ operator has been used to construct the Ai.
Then, assuming A = A1 ⊙ · · · ⊙ An, we may define A{x̃/̃y} = A1{

x̃/̃y} ⊙
· · · ⊙An{

x̃/̃y} where substitution is defined on name-extended channel types
the natural way and generalised to action types as follows2.

2The sum is used to handle name collisions

29

Ai{
x̃/̃y}

def
=

∑

(a:r)∈Ai

(

(a : r){x̃/̃y}
)

Protocol instantiation models a remote behaviour. The next lemma
states that if the remote side is typable then its type is equal (after weak-
ening) to the protocol instantiation.

Lemma 4.3.1 (Protocol Instantiation is Faithful) If A = (νỹ) (B ⊙
ρ(ỹ : σ̃)) ⊙ ρ̄(x̃ : σ̃) is well defined then A ≤ B{x̃/̃y}.

Proof
We map abstract resources to corresponding parameter resources as fol-

lows: i↓ 7→ yi, i↑ 7→ yi, ı̌ 7→ y̌i and ı̂ 7→ ŷi. ρ’s abstract resource partial
ordering <ρ is thus translated to a relation on resources <ỹ

ρ. The subgraph
of 7→B containing only resources based on names in ỹ is written 7→B

∣

∣

ỹ
.

Then, as B ⊙ ρ(ỹ : σ̃) is well defined, 7→B

∣

∣

ỹ
⊆<ỹ

ρ.
2

Let A ⊢π P and (ΣA;P) −→ (ΣA;P ′). We want A ⊢π P ′.
We first handle a very basic case, and then generalise it to arbitrary

processes. Safety is proven essentially the same way for plain, linear and
ω-channels. We show the case of a plain communication.

Let A ⊢π P = a(ỹ).R | a〈x̃〉. Clearly, (ΣA;P) −→ (ΣA;R{x̃/̃y}).
Let B ⊢π’ R be the typing used when typing P .
Then B{x̃/̃y} ⊢π’ R{x̃/̃y}.
We now study how A is built from B.
a.(ν ỹ) (a : ((σ̃)p , ρ) + ρ(ỹ : σ̃) ⊙ B) ⊢p a(ỹ).R
composed with
a.

(

a : (
(

σ̃
)p

, ρ) + ρ̄(x̃ : σ̃)
)

⊢p a〈x̃〉
yields
a.(ν ỹ)

(

a : ((σ̃)p , ρ) + ρ(ỹ : σ̃) ⊙ B ⊙ ρ̄(x̃ : σ̃)
)

⊢p P .
Removing the restricted names from the type:
a : ((σ̃)p , ρ) ⊙ a.

(

B \ ỹ ⊙ ρ̄(x̃ : σ̃)
)

⊢p P
After transition, the type is B{x̃/̃y} ⊢π R{x̃/̃y} = P ′.
By weakening: a : ((σ̃)p , ρ) ⊙ a.(B{x̃/̃y}) ⊢p P ′.
By Lemma 4.3.1, B{x̃/̃y} can be further weakened to be equal to P ’s

typing.
This proof is easily generalised to arbitrary processes:
Let A ⊢π P −→ P ′. Reorganising P ’s structure we can bring the input

and output side of the communication together, and have P ≡ C[P0] −→

30

C[P ′
0] ≡ P ′, where A0 ⊢π P0 is of the above form. By the above proof,

A0 ⊢π P ′
0, and the development from A0 ⊢π P0 to A ⊢π P can be applied to

A0 ⊢π P ′
0, yielding A ⊢π P ′

4.4 Safety, general case

Let A ⊢π P .
Safety is generalised to arbitrary transitions as follows.
For µ = a(x̃), consider the process Q = P | a〈x̃〉. It is typable if and only

if the µ-transition is available on (ΣA;P) as they are both subject to the
same side conditions on ⊙. Then, the µ-transition from P leads to the same
process as a τ -transition from Q, and τ -safety can be used for the latter.

For µ = (ν z̃) a〈x̃〉, a similar trick can be used, by composing with a
corresponding input process. After reduction, the restrictions on names
in z̃ can be removed, making the names visible in the type while keeping
typability, because if a process is typable then so are its sub-processes.

4.5 Soundness

Let A ⊢π P and a ∈ dom(A) s.t. ∄r : r 7→A a. Let ΣA (a) = (σ̃)m. Then:

• If m =↑l then there is P ′ with P
(νz̃) a〈x̃〉

=======⇒ P ′

• If m =↓l then there is P ′ with P
a(x̃)

====⇒ P ′

• If m =↓ω then there is P ′ with P
a(x̃)

====⇒ P ′

Defining the above three conditions as availability of the corresponding
resource, we define a partial order <A on resources corresponding to the non-
reduced dependency network, i.e. where dependencies are not forwarded or
simplified.

Availability of active resources is then proven by induction on <A.

4.6 Value Uniqueness

Lemma 4.6.1 (Value Uniqueness) Let A ⊢π P . Then ∀a ∈ dom(A),
∃!ξ : ΩP (a) = ξ.

Proof By induction on the process structure, by computing ΩΣA

P . Pre-
fixing processes groups observable values of the continuation into a record,

31

while parallel composition substitutes indexed data components being pro-
vided by a term of the parallel composition.

The side conditions of the ⊙ operator allows to guarantee uniqueness,
while the side conditions of the restriction operator (used by the prefix rules)
guarantee existence.

2

4.7 Closeness

Lemma 4.7.1 (Closeness) Let A ⊢ P . Then P ≈R L(ΣA), up to α-
renaming.

Proof Again, by induction on P ’s structure, by showing it is bisimilar
to the product of template processes instantiated with P ’s observable data.
Interactions on plain channels are prevented as they would produce a typing
like A ⊢p P . 2

4.8 Discreetness

The following definition characterises ω-input continuations whose reply
channels are bound. Note that an inert process is not necessarily dead-
locked. One example of inert process would be (u :↑ω; ū).

Definition 4.8.1 (Inert Process) A typed process (Σ;P) is said inert if
(Σ;P) ≈R (∅,0).

By extension, a (consistent) typed context (Σ[·], C[·]) is said inert if up
to structural congruence C[·] is of the form (νã) (X | [·]) where X is inert.

To prove discreetness of typable processes we are going to use a slightly
stronger definition of bisimulation that only relates processes with the same
type mapping, that allows working on simpler relations. Note that it is too
strong as a general purpose bisimulation — for instance inert processes can’t
be defined with it.

Definition 4.8.2 (One-Type Discreet Bisimulation) A relation R on
typed processes is a one-type discreet bisimulation is it matches Definition
2.6.1 with the following changes:

• (ΣP ;P)R(ΣQ;Q) implies ΣP = ΣQ.

• The third point is changed as: ∀u : σ = ΣP (u) and md(σ) =↑ω implies
(νu) (Tσ(u) ⊙ ΣP ; Lσ(u) |P) R (νu) (Tσ(u) ⊙ ΣQ; Lσ(u) |Q).

32

A one-type discreet bisimulation is not necessarily a discreet bisimula-
tion ; however any one-type discreet bisimulation is contained in a discreet
bisimulation, and in particular the largest one-type discreet bisimulation is
(strictly) contained in ≈R.

We are going to use the following proof method for proving discreet
bisimilarity, which is inspired by [San00].

Definition 4.8.3 (Discreet Bisimulations Up To Inert Contexts)
A relation R on typed processes is a (one-type) discreet bisimulation up

to inert contexts if it matches the definition for (one-type) discreet bisimu-
lation for which all instances but the first of the relation R are replaced by
R′, for which XRY implies C[X]R′C ′[Y] for any inert contexts C[·] and
C ′[·].

Lemma 4.8.4 R being some (one-type) discreet bisimulation up to inert
contexts, ARB implies A ≈R B.

Lemma 4.8.5 The relation R = {(ΣA;P) 7→ (ΣA;P) : A ⊢p P} is a
one-type discreet bisimulation up to inert contexts.

Proof As R only relates equal processes, most points of the bisimula-
tion definition are trivially proven, except for the uniqueness and closeness
requirements:

Let (ΣA;P)
a(x̃)

−−−−→ (Σ′;P ′) and md(ΣA (a)) =↓ω.
Data observable at a is unique by Lemma 4.6.1.
Let a(ỹ).Q be the input that was instantiated by this transition. By the

input rule, there is B with B ⊢ Q. As this input is replicated (Convention
3.6.1), ∀b 6∈ ỹ : ΣB (b) 6∈ {↓l, ↑l, ↓ω ,⋆l}.

So, using Lemma 4.7.1, before applying the restriction, (νx̃) (B{x̃/̃y})
is inert and (α-renaming x̃ if needed) there is an inert context C[·] s.t.
(νx̃)P ′ ≡ C[P].

2

As a corollary, all typable processes are discreet.

References

[GNR04] M. Gamboni, U. Nestmann and A. Ravara. What is TyCO, After All? Master’s
thesis, École Polytechnique Fédérale de Lausanne, 2004.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

33

[Mil93] R. Milner. The Polyadic π-Calculus: A Tutorial. In F. L. Bauer, W. Brauer
and H. Schwichtenberg, eds, Logic and Algebra of Specification, Proceedings
of the International NATO Summer School (Marktoberdorf, Germany, 1991),
volume 94. Springer, 1993. Available as Technical Report ECS-LFCS-91-180,
University of Edinburgh, U. K., 1991.

[MPW92] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes, I and II.
Inf. Comput., 100(1):1–77, 1992.

[San00] D. Sangiorgi. The Bisimulation Proof Method. Journal, 2000. Entry To Be
Completed.

[SW01] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, New York, NY, USA, 2001.

[YBH04] N. Yoshida, M. Berger and K. Honda. Strong normalisation in the π-calculus.
Inf. Comput., 191(2):145–202, 2004.

34

