
Type checking liveness properties of
mobile processes

Maxime Gamboni1

Instituto de Telecomunicações, Instituto Superior Técnico

October 30, 2008

1Joint work with António Ravara



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Outline

1 Motivation

2 TyPiCal

3 Receptiveness, Responsiveness, Termination

4 Our Work

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Motivation

This work uses the following language:

The Synchronous Polyadic π-calculus

P ::= 0
∣∣ a(x̃).P

∣∣ a〈ṽ〉.P
∣∣ (P|P)

∣∣ (νx) P
∣∣ !P

Running example:

Client-Server interaction: S | C
Example Server:
S = ! a(x , n).(some processing).x〈r〉
Example Client:
C = a〈t, 42〉.t(n).P

We now define a number of properties we would like this system to
satisfy, and terminology used in this presentation.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Simple Types

Definition (Simple Type)

The simple type σ of a name is either a data type (Int, Bool , etc)
or a channel type chan(σ̃).

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Properties we want to verify (1)

! a(x , n).(some processing).x〈r〉 | a〈t, 42〉.t(n).P

Simple Types

There should exist a mapping of names to types that is
consistent over the process.

Types of values passed over a channel should match the
parameter types of the channel’s channel type.

E.g., a : chan(chan(Int), Int) matches t : chan(Int), 42 : Int.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Activeness

Definition (Activeness)

Activeness pA of a port p ∈ {a, ā} in a process P: Ability of P
to reliably receive (p = a) or send (p = ā) a message on it.

Strong Activeness additionally requires the input (resp.,
output) transition to be available without prior τ -reduction.

ω-Activeness additionally requires the activeness property to
hold an arbitrarily large number of times.

Uniform activeness of a port requires all requests to a name to
be handled with the same continuation.

The definition of “reliable” depends on to what extent the
environment may interfere.
Also note that some authors use for “activeness” the unrelated
meaning of “outputs not under replication”.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Activeness Examples

Strong ω-activeness ⇒ ω-activeness ⇒ activeness

Strong ω-activeness ⇒ strong activeness ⇒ activeness.

Mentioning only the strongest property, assuming no
environment interference:

! a | b | a: a is strong ω-active.
b.! a | b̄: a is ω-active.
b.a | b̄ | a: a is strong active.

b(x).x | b〈a〉: a is active.
t̄ | t | t.! a: a is not active.

! a(x).P is strong uniform ω-active on a.

a(x).(P | ! a(x).Q) is strong non-uniform ω-active on a.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Properties we want to verify (2)

! a(x , n).(some processing).x〈r〉 | a〈t, 42〉.t(n).P

Activeness

The server should be ω-active on its input port a.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Responsiveness

Definition (Responsiveness)

Responsiveness pR of a port p in a process P is the ability to
reliably respond (p = a) or provide parameters (p = ā) to a
request.

“Respond” and “provide parameters” means being active and
responsive at the parameters

Note that for this to make sense we need IO-Types, i.e. which
parameter polarity must be used by the server and the client.

Activeness and responsiveness on a given port aren’t related
— activeness tells if a message is guaranteed to be
exchanged; responsiveness tells what happens afterwards.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Responsiveness Examples

Let P = a(x).Q with a 6∈ fn(Q) and x : chan(Int). Then,
assuming IO-alternation, a is responsive in P if and only if, for

all b, having P
a(b)
−−−−→ Q ′, b̄ is active in Q ′.

Port a is active and responsive in a(x).x〈3〉.
Writing ⊥.P for (νt) t.P, a is active but not responsive in
a(x).⊥.x〈3〉.
Writing ?.P for (νt) (t̄|t|t.P), a is responsive but not active
in ?.a(x).x〈3〉. It is active but not responsive in a(x).?.x〈3〉.
Port a is vacuously responsive in ⊥.a(x).Q for all Q.

Port b̄ is not responsive in b〈a〉.a(x).⊥.x〈3〉, because its
parameter a isn’t.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Properties we want to verify (3)

! a(x , n).(some processing).x〈r〉 | a〈t, 42〉.t(n).P

Responsiveness

The server should be responsive on its input port a (in this
case, active on the output port x̄)

The client should be responsive on the output port ā (in this
case, active on the input port t)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Termination

Definition (Termination)

A process P terminates if all its reduction sequences are finite
in length.

A port p in a process P terminates if, for any P
µ
−−→ Q with

sub(µ) = p, all reduction sequences caused by µ are finite in
length.

It can be tricky to formally define “caused by” ; intuitively, a
reduction Q −→ Q ′ is caused by µ if at least one of the
communication partners has been brought to top-level by µ.
A reduction sequence is caused by a transition if every
reduction is caused by a transition earlier in that sequence.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Termination Examples

Any process without replication terminates and all its ports
terminate as well.

In ! a(x).b〈x〉 | ! b(x).x〈3〉, both a and b terminate (and so
does the process).

In ! a(x).b〈x〉 | ! b(x).a〈x〉, neither a nor b terminates, but the
process terminates (it has no reductions)

In ! a〈b〉 | ! a(x).x〈3〉, all ports terminate but the process
doesn’t (every request to a is handled finitely, but there’s an
unbounded number of them).

Let Ω = (νt) (! t(x).t〈x〉|t〈x〉). Then in a(x).(x〈3〉 |Ω) the
process terminates but a doesn’t, and in (a(x).x〈3〉) |Ω, a
terminates but the process doesn’t.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Termination Examples (2)

Note that termination and responsiveness are not directly related:

In a(x).(x〈3〉 |Ω), a is responsive but doesn’t terminate.

In a(x).⊥.x〈3〉, a terminates but isn’t responsive.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Properties we want to verify (4)

! a(x , n).(some processing).x〈r〉 | a〈t, 42〉.t(n).P

Termination

The server input port a should terminate.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Outline

1 Motivation

2 TyPiCal

3 Receptiveness, Responsiveness, Termination

4 Our Work

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal

An implementation of a lock-freedom type system (Naoki
Kobayashi)
http://www.kb.ecei.tohoku.ac.jp/~koba/typical/

TyPiCal 1.6.1: A Type-based static analyzer for the Pi-Calculus

Usage:

typical [option] filename

Available options are:

-d: deadlock-freedom analysis

-i: information flow analysis

-l: lock-freedom analysis (default)

-wl: weak lock-freedom analysis

-wlauto: weak lock-freedom analysis (with termination annotation inference)

-s: simple type inference

-u: useless code elimination

-t: termination analysis

Maxime Gamboni Type checking liveness properties of mobile processes

http://www.kb.ecei.tohoku.ac.jp/~koba/typical/


Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal analysis

We now introduce a few concepts used by TyPiCal when analysing
processes.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Deadlock-Freedom

As a dual to activeness, we introduce deadlock-freedom:

Definition (Deadlock)

An input or output prefix in a process P is deadlocked if it is
top-level and P can’t be reduced.

An input or output prefix in a process P is deadlock-free if no
reduction of P leads to that prefix being deadlocked.

A sufficient condition for deadlock-freedom on an action on port p
is to have the complement port p̄ active — if p̄ is active then
either the process can be reduced or p̄ is top-level and can
communicate with p.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Deadlock Examples

If @Q : P −→ Q then all top-level actions in P are deadlocked.

In ! a(x).P |Q, all a-outputs are deadlock-free.

In a.b̄ | b.ā, both a and b are deadlocked.

In P =?.a | ā, a is deadlock-free, but ā isn’t because
P −→≡ ⊥.a | ā in which ā is deadlocked, although P −→∼ a | ā
in which ā is deadlock-free.

All of P = ! a(x).b〈x〉 | ! b(x).a〈x〉 | a〈s〉 | s, in particular the
s-input, is deadlock-free, because P can always be reduced.

All of P|Ω is deadlock-free because it can always be reduced.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Livelocks

The last two examples of deadlock-freedom show that it is not a
very interesting property on its own.

Definition (Livelock-freedom)

An action of a process P on a port p is livelock-free if it reaching
top-level implies it can be consumed.

For example, a request to a server is livelock-free is and only if
it is guaranteed to be eventually received.

Livelock-freedom implies deadlock-freedom.

If a process terminates then livelock and deadlock-freedom are
equivalent.

We conjecture that p is livelock-free if and only if the
complement port p̄ is active (this however requires the
activeness definition to be formalised in a specific way)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Livelock Examples

In ! a(x).x̄ | a〈b〉 | b, the input at b is livelock-free.

In P = ! a(x).b〈x〉 | ! b(x).a〈x〉 | a〈s〉 | s, the s-input is not
livelock-free (however all outputs are livelock-free).

In ! a | ! ā, all actions are livelock-free: Any particular input or
output “contained” in the replication can be consumed.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Channel Usages

Channel usages tell for a particular channel how many times the
input and output ports are used, and in what order.

Channel Usages

U ::= 0
∣∣ ρ

∣∣ u.U
∣∣ (U|U)

∣∣ U&U
∣∣ µρ.U

u ::= !
∣∣ ?

Usage !.U does an output and then U; Usage ?.U does an
input and then U.

(U1|U2) uses according to U1 and U2 in parallel.

U1&U2 uses according to either U1 or U2 but not both.

We write chanU(σ̃) for a channel of usage U and parameters σ̃.
When the context is clear, we may write just the usage for a
parameterless channel.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Some Examples

a :?, b :?|!, c :! ` a.b | b̄.c̄

(this process uses a single port of a and c , and both ports of b, in
parallel)

a : chan∗?|!(!), b :! ` ! a(x).x〈1〉 | a〈b〉
(∗? def

= µρ.(?.ρ))

Note that the parameter usages give the behaviour of the channel’s
input side (the a-input outputs (“!”) on x).

a :!|!|?, x :?|!, y :?, z :? ` ā.x | ā.y | a.z | x̄ .

Here, the usages for x and y don’t tell whether they will actually
be input or not — just that they may be.

If a 6= t has usage U1 in P and U2 in Q, then it has usage
U1&U2 in (νt) (t̄ | t.P | t.Q).

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal

Obligation and Capability levels: Natural numbers similar to time
tags.

u ::= !tOtC
∣∣ ?tO

tC

Obligation level: When is the primitive ready to fire (i.e. is at
top-level)

Capability level: If that primitive is at top-level, when will it
actually be consumed

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Some Examples

a : (?0
t ), b : (?t+1

0 |!0
t+1), c : (!t+2

t′ ) ` a.b | b̄.c̄
(Assuming a gets consumed at time t, b is ready to fire at time
t + 1, b̄ is immediately ready, but gets actually consumed at time
t + 1. b has capability 0 because no matter when it is brought to
top-level, b̄ will be ready to communicate with it)

a : chan(∗?0
∞|!0

0)(!0
cb

), b : (!1
cb

) ` ! a(x).x〈1〉 | a〈b〉

(a has capability level ∞ because it can’t be fully consumed. b̄ has
obligation level 1 as its delegation to a “takes time”. Parameter x̄
has obligation 0 because as soon as a gets a request, x̄ becomes
top-level.)

a : (!0
∞|!0
∞|?0

0), x : (?∞0 |!0
∞), y :?∞cy

, z :?1
cz
` ā.x | ā.y | a.z | x̄

both ā have capability zero because neither is guaranteed to
succeed. Being at top-level, all a and ā have obligation zero.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Correspondence between concepts

A term is active if and only if it has a finite obligation level
and all complement actions have a finite capability level.

A term is strongly active if and only if it has a zero obligation
level and all complement actions have a zero capability level.

A term is livelock-free if and only if it has a finite capability
level

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal examples

The black lines show the input to the program, and coloured lines
the result (Irrelevant portions removed for clarity).
Green is for success (livelock-free) and red for possible lock
(potentially infinite capability level).

a | a.s̄ | ā | ā | s
 a | a.s̄ | ā | ā | s

(Thanks to channel usages, TyPiCal sees that inputs and outputs
are balanced)

a | a.s̄ | a | ā | ā | s
 a | a.s̄ | a | ā | ā | s

(It is not known which two inputs will be consumed, so they are all
unreliable and marked red, and therefore so is the input at s)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal examples

t̄1.! a(x).ū1.x̄ | t̄2.! a(x).ū2.x̄ | a〈s〉 | s | ! t1 | ! u1 | ! u2

 t̄1.! a(x).ū1.x̄ | t̄2.! a(x).ū2.x̄ | a〈s〉 | s | ! t1 | ! u1 | ! u2

Having either ! t1 or ! t2 is enough for a〈s〉 to succeed. We
however need both ! u1 and ! u2 for s to succeed:

t̄1.! a(x).ū1.x̄ | t̄2.! a(x).ū2.x̄ | a〈s〉 | s | ! t1 | ! u1

 t̄1.! a(x).ū1.x̄ | t̄2.! a(x).ū2.x̄ | a〈s〉 | s | ! t1 | ! u1

(Composing that process with ! t2 permits a〈s〉 to be caught by
the second input, making it unreliable without a ! u2)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal counter-examples

! a(x).x〈a〉
 The process is ill-typed.

(This process requires a recursive channel type such as
(µσ. chan(chan(σ))), which TyPiCal doesn’t handle.)

! s(c).c(a).c(b).ā.b̄ | (νc) s〈c〉.c〈a〉.c〈b〉.a.b (1)

 ! s(c).c(a).c(b).ā.b̄ | (νc) s〈c〉.c〈a〉.c〈b〉.a.b
(An encoding of ! s(a, b).ā.b̄ | s〈a, b〉.a.b into monadic π. Note
that TyPiCal incorrectly marks the communication on the
parameters as unreliable)

(νt)
(
t̄
∣∣ t.(! z |! a(x).z̄ .x̄)

∣∣ t.! a(y).ȳ
)

 (νt)
(
t̄
∣∣ t.(! z |! a(x).z̄ .x̄)

∣∣ t.! a(y).ȳ
)

(Randomly picks a “slow” or a “fast” a-input. Note that the
z-interaction in the “slow” one is incorrectly marked as unreliable)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Outline

1 Motivation

2 TyPiCal

3 Receptiveness, Responsiveness, Termination

4 Our Work

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Uniform Receptiveness (Sangiorgi) [San99]

Partitions the set of possible names into linear receptive,
ω-receptive and plain names.

Linear receptiveness and ω-receptiveness correspond
respectively to strong activeness and strong uniform
ω-activeness, always on input ports.

The type system makes sure linear names are used once for
input and once for output and ω names are used once

Monadic π-calculus, but with sums and matching

Defines “receptiveness-aware” bisimulation relations.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

The Receptive Distributed π-calculus (Amadio et al.)
[ABL03]

Works on distributed π-calculus

Communication not permitted across sites, so deadlocks may
occur between two strongly active complementary ports if
they are at different sites. (Their type system provides safety
against this).

Types non-uniform ω-activeness.

Does not provide an equivalent to responsiveness, being only
interested in input activeness.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Responsiveness (Acciai, Boreale) [AB07]

Works on monadic asynchronous π-calculus.

Their “responsiveness” corresponds to our activeness, not our
responsiveness.

Describes two independent type systems covered in the next
two slides.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

First Type System (Acciai, Boreale)

A dependency network checks strong linear activeness or
strong ω-activeness on input ports, and activeness for linear
output ports. For a process like b̄ | b.ā, a dependency a→ b
indicates the order in which linear channels are consumed.

Levels are used much like parameter obligation levels in
TyPiCal for checking delegation, in that ! a(x).b〈x〉 requires
b’s level to be smaller than a’s.

Types recursive functions like
! f (n, r). if(n = 0) r〈1〉 else (νr ′) (f 〈n − 1, r ′〉 | r ′(m).r〈n ∗m〉)
Rejects guarded inputs and “half-linear names” like t in
(νt) (t̄ | t.P | t.Q)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Second Type System (Acciai, Boreale)

Introduces capabilities — not related to capability levels, but
similar in idea to TyPiCal’s channel usages.

Allows guarded inputs, the “half-linear names” mentioned
previously and replicated outputs, but rejects some recursive
functions such as the “factorial” one given previously.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Termination (Deng, Sangiorgi) [DS06]

This paper gives type systems for termination. The first type
system it provides stratifies names into levels.
The level of a (replicated) server:

Indicates the maximal delegation depth

If it is finite, then the server input port terminates

Example:

P = ! a(x).(a〈x〉+ b〈x〉) | ! b(x).c〈x〉 | ! c(x).x〈1〉

a: level ∞, b: level 1, c: level 0
The paper then describes three refinements of the type system to
allow for some forms of recursion, (much like [AB07]), and do a
special treatment of input sequences, to type even more processes.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Outline

1 Motivation

2 TyPiCal

3 Receptiveness, Responsiveness, Termination

4 Our Work

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Our Work

Handles activeness and responsiveness separately

Designed for polyadicity

Uses accurate channel types, separately specifying the
behaviour of a channel’s input and output.

Handles recursive channel types

Working in an open, labelled setting; The type system takes in
input what the process’ environment is permitted to do, and
outputs a description of how the program’s behaviour changes
depending on environment interference.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Dependency Network

Instead of calculating levels: dependency statements.

Actually the way TyPiCal works internally.

Informally, α depends on β in P if composing P with a process
Q that provides β gives a process P|Q that provides α.

Example: What are s̄’s (activeness-) dependencies in that process?(
t̄.a | ū.a | v̄ .ā.w̄ .s̄

)
|
(
u |w

)
(2)

s̄ depends on (activeness for) v , a and w

a depends on any one of t or u

and u, w are provided on the right hand side

Therefore s̄ only depends on v

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Dependency Network

Grammar

δ ::= εγ — Dependency Statements
α, β, γ ::= pA

∣∣ pR — Activeness, Responsiveness Resources

ε ::= α <
∣∣ β ≤

∣∣ (ε|ε)∣∣ ε&ε
∣∣ ¬

∣∣ ∅ — Dependencies

α < β and α ≤ β are strong and weak dependencies,
respectively (a resource is allowed to depend on itself only
through weak dependencies, which occur when computing
responsiveness dependencies).

ε1|ε2 is satisfied if either of the εi is.

ε1&ε2 is satisfied if both εi are.

¬γ means γ is never satisfied.

∅γ means γ is satisfied without dependencies.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Dependency Network Examples

We omit the A index for now, focusing on activeness dependencies.

In a.b, ā < b.

t.u.a (3)

In (3), (t̄ <)&(ū <)a, also written (t̄&ū) < a or even t̄ ū < a.

In t.a | u.a, (t̄ <)|(ū <)a, also written (t̄|ū) < a.

In ⊥.a, ¬a.

In (2),
(
t̄.a | ū.a | v̄ .ā.w̄ .s̄

)
|
(
u |w

)
:

((t|u) < a)� (v&a&w < s̄)� (u,w)
= (v&(t|u)&w < s̄)� (u,w)
= (v < s̄)

(� stands for dependency network composition)

In ā.b | b̄.a, a < b and b < a compose into a < a and b < b,
equivalent to ¬a and ¬b.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Protocols

Example servers for two parameter channels

S1 = ! a(x , y).(x̄ |ȳ), S2 = ! a(x , y).x̄ .ȳ , S3 = ! a(x , y).ȳ .x̄ .

Example clients for two parameter channels

C1 = a〈b, c〉.(b|c), C2 = a〈b, c〉.b.c , C3 = a〈b, c〉.c .b.

Which Si |Cj give a deadlock?

S1 |C1, S1 |C2, S1 |C3, S2 |C1, S2 |C2, S3 |C1, and S3 |C3 ok.
S2 |C3 and S3 |C2 create a deadlock!

Solution: Parameter Protocols

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Protocols

S2 |C3 = ! a(x , y).x̄ .ȳ | a〈b, c〉.c.b τ−−→ b̄.c̄ | c .b

It is unclear if it is the server or the client that should be
changed to fix the deadlock.

Provide a “protocol”; check who violates it.

Definition (Protocol)

A protocol is a pair (ξI ; ξO) where each ξp is a set of dependency
statements on parameter resources n or n̄ (I=Input, O=Output;
n ≥ 1 is a parameter number).

A communication party is allowed to have a parameter depend on
another if combining it with the protocol doesn’t create a
circularity.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Protocol Examples

(1 < 2̄; 1̄ < 2), the left to right protocol, rejects C3 because
C3 contains c .b which entails c̄ < b, which, combined with
(1 < 2̄){bc/12} = (b < c̄), creates a loop.

(2 < 1̄; 2̄ < 1), the right to left protocol, similarly rejects S2.

(1 ≤ 2̄, 2 ≤ 1̄; 1̄ ≤ 2, 2̄ ≤ 1), the empty protocol, rejects both
because any dependency on the server or the client creates a
loop when composed with the protocol. Only the
dependency-less system S1 |C1 is accepted.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Responsiveness Dependencies

The responsiveness dependencies is the set of all parameter
dependencies not given by the protocol.
Examples:

In t̄.! a(x).ū.x̄ , tA < aA and uA < aR.

In ! a(x).b〈x〉 , bA&bR < bR.

In a(x).t̄1.x̄ | a(x).t̄2.x̄ , t1&t2 < aR (both are required for
responsiveness because if a request is sent it is not known
which input will receive it).

More generally: if εiaR holds in Pi then (ε1&ε2)pR holds in
P1 |P2.

Assuming IO-alternation, in a〈x〉, xA&xR ≤ āR, aA&aR < x̄A

and aA&aR < x̄R.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Multiplicities

For simplicity, we don’t handle arbitrary usages, but merely channel
multiplicities:

Definition (Channel Multiplicities)

The multiplicities of a channel is a pair (mI ; mO) where both
mp ∈ {0, 1,F, ω}, standing respectively for inaction, linearity, lack
of constraints and uniform replication

We express that information as am, ām′
, which is equivalent, in

term of usages, to a : chan!m|?m′ (σ̃), with u0 = 0, u1 = u,

uF = µρ.(u.ρ& 0) and uω = µρ.(u.ρ) (for both u ∈ {!, ?}).

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Labelled Dependencies

For a port p, responsiveness (pR) dependencies generally do not
include activeness (pA) dependencies.

P = (νt)
(
t̄
∣∣ t.(! z |! a(x).z̄ .x̄)

∣∣ t.! a(y).ȳ
)

(4)

The leftmost a-input gives zA < aR, the z-input gives t̄A < zA, but
we have ¬t̄A, as the t-output isn’t reliable. Yet, a is responsive!
Solution: Labelled dependencies.

Labelled Dependencies

Labels l are objects belonging to some infinite set, disjoint
from other objects considered so far.

l : ε: Labels part of a dependency with a unique label l .

¬l : ε: This dependency may be ignored if used from within an
l-labelled region

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Labelled Dependencies

The type system uses labelled dependencies as follows.

Every responsiveness dependency statement receives its own
fresh label (l : εpR).

When typing a〈ṽ〉.P or a(x̃).P, the (¬l̃ : pA <) dependency
(p = ā or p = a) is added to all activeness dependencies, with
l̃ being the set of all responsiveness labels in use in P.

Then, activeness resources get the extra pA dependency, but
responsiveness resources don’t.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Labelled Dependency Example

Viewing the example again:
P = (νt)

(
t̄
∣∣ t.(! z |! a(x).z̄ .x̄)

∣∣ t.! a(y).ȳ
)

The definition for responsiveness gives (l : x̄A&r : ȳA) ≤ aR.

For simplicity we ignore the bindings inherent to input prefixes,
and then x̄ and ȳ have the following activeness dependencies:
(zA&¬l : (t̄A&āA)) < x̄A and (¬r : (t̄A&āA)) < ȳA.

Substituting in aR’s dependencies:
l : (¬l : (t̄A&āA))&zA & r : (¬r : (t̄A&āA)) < aR

Dropping the (r : ¬r : . . . ) and (l : ¬l : . . . ) parts: l : zA < aR

Resource zA depends on (¬l : t̄A), so we get l : (¬l : t̄) < aR

As (l : ¬l : . . . ) is equivalent to ∅ we get ∅aR.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Application (Recursive Channel Types)

This example justifies the use of processes like ! a(x).x〈a〉, with an
encoding of sequential-style programming.

Program Counter pc: one of {a1, . . . , an}
Memory state m: Data that can be passed along a channel

Program Line: ! ai (m, out, next).out〈. . .〉.next〈aj ,m
′〉

Executing a program:
! run(m, out, pc).pc〈m, out, next〉.next(pc ′,m′).run〈pc ′, out,m′〉

for (;;) print ‘‘hello world!’’;

! a(m, t, x).(t〈”hello world!”〉 | x〈a,m〉) (5)

Port a is responsive and, for some σm, has a recursive type
µσ. chan(σm, chan(Str), chan(σ, σm)).

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Expressiveness

We now compare the expressiveness of our work to that of
other papers we covered, in terms of sets of correctly handled
processes.

Note that our type system is not concerned about termination,
and therefore it would make no sense to compare it with
termination type systems (as shown before, termination
neither implies nor is implied by activeness or responsiveness).

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

TyPiCal’s lock-freedom analysis

Not comparable. Although their obligation and capability
levels can be directly mapped to dependency networks, our
work doesn’t handle arbitrary channel usages. For instance, in
(νa) (a | a | ā | ā.s̄), it classifies a as plain (aFāF) and
unreliable, and therefore marks s̄ as non-active.

On the other hand, our system’s handling of labelled
dependencies (4) and recursive channel types (5) makes our
system accept processes rejected by TyPiCal.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Acciai, Boreale [AB07]

Their first type system is subsumed by ours (their levels and
dependency graphs can respectively be translated into
responsiveness and activeness dependencies, and semi-linear
names (2) or guarded inputs (3) well-handled by our system
are rejected by theirs)

Note however that our system does not recognise as
responsive any form of recursivity. We believe however that
their way of handling it could easily be adapted to our system:
An output call b〈ṽ〉 found in a server ! a(x̃) should create a
weak responsiveness-dependency (“bR ≤ aR”) if ṽ ’s “weight”
is smaller than x̃ ’s.

We answer affirmatively their question about generalised
dependency graphs (see Remark 1 (1) in their paper, as well
as Section 6.2)

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Acciai, Boreale’s second system

We conjecture that our system subsumes their second type system
as well.

They introduce “capabilities”, which closely correspond to our
multiplicities, so that we can translate their types into ours.
Having translated the types, typability in their system implies
typability in ours.

On the other hand they have a number of restrictions absent
from our system. E.g. “+-responsive” names carrying
“responsive” names must have an unguarded replicated input,
so that a(x).! b(y).y〈x〉 (all names bilinear active, or
“responsive”) would be rejected2.

2Note that a generalisation of their system, not having this limitation, is to
be published soon.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Strong activeness type systems [ABL03, San99]

We believe that typability in these systems, when only
considering non-distributed processes without sums, implies
typability in our system.

However this is not particularly significant because we are
interested in (“weak”) activeness, so that for instance our type
system recognises r as active in (ā|a.r), which is rightfully
rejected by their type systems, as r is not strong active.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

Future Work

Better understand, and formally prove the relationship
between our work and those mentioned in this presentation.

Prove type soundness

Possible type system extensions: Usages, recursion, sums,
choice types, . . .

Prove the equivalence of TyCo and the π-calculus, as an
application of this type system.

Write papers . . .

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

References I

L. Acciai and M. Boreale.
Responsiveness in Process Calculi.
In M. Okada and I. Sato, eds, Proc. of 11th Annual Asian
Computing Science Conference (ASIAN’06), volume 4435 of
Lecture Notes in Computer Science, pages 136–150.
Springer-Verlag, 2007.

R. M. Amadio, G. Boudol and C. Lhoussaine.
The receptive distributed π-calculus.
ACM Trans. Program. Lang. Syst., 25(5):549–577, 2003.

Y. Deng and D. Sangiorgi.
Ensuring termination by typability.
Information and Computation, 204(7):1045–1082, 2006.

Maxime Gamboni Type checking liveness properties of mobile processes



Motivation TyPiCal Receptiveness, Responsiveness, Termination Our Work

References II

D. Sangiorgi.
The Name Discipline of Uniform Receptiveness.
Theoretical Computer Science, 221(1–2):457–493, 1999.
An abstract appeared in the Proceedings of ICALP ’97 , LNCS
1256, pages 303–313.

Maxime Gamboni Type checking liveness properties of mobile processes


	Motivation
	TyPiCal
	Receptiveness, Responsiveness, Termination
	Our Work

