
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Statically Proving Behavioural Properties
in the π-calculus via Dependency Analysis

Maxime Emile Gamboni

Thesis specifically prepared to obtain the PhD Degree in Mathematics

December 2010

Supervisor: Doctor António Maria Lobo César Alarcão Ravara
Co-Supervisor: Doctor Carlos Manuel Costa Lourenço Caleiro

Jury

President:

Doctor Uwe Nestmann
Doctor Luís Manuel Marques Da Costa Caires
Doctor Paulo Alexandre Carreira Mateus
Doctor Carlos Manuel Costa Lourenço Caleiro
Doctor António Maria Lobo César Alarcão Ravara
Doctor Jaime Arsénio de Brito Ramos

The president of the IST's Scientific Board

Members:

(Master's Degree in Computer Science)

ii

iii

T́ıtulo Determinação Estática de Propriedades Comportamentais no Cálculo π, usando Análise de
Dependências

Nome Maxime Gamboni

Doutoramento em Matemática

Orientador António Ravara

Co-orientador Carlos Caleiro

Resumo Nesta tese apresento um mecanismo semântico genérico e um sistema de tipos provado

correcto para analisar propriedades comportamentais do cálculo-π. Além de propriedades de an-

imação tais como actividade (uma generalisação da receptividade), alcance e terminação, o mecanismo

também suporta a análise de propriedades de segurança tais como determinismo e isolamento.

A análise de dependências é uma parte central deste mecanismo, funcionando com declarações

de dependências descrevendo propriedades de um processo condicionadas por recursos esperado de

processos exteriores. As declarações de dependência são usadas como partes elementares de declarações

comportamentais, declarações lógicas descrevendo a negociação de recursos entre um processo e o

seu ambiente. A análise de dependências traz uma poderosa propriedade de composicionalidade:

compondo elementos pré-analisados (tipados), o tipo do processo resultante pode ser directamente

obtido a partir dos tipos dos elementos, sem precisar de uma análise separada do processo completo.

As declarações comportamentais também integram primitivas para selecção (escolhas feitas por um

processo) e ramificação (escolhas oferecidas por um processo).

O sistema de tipos, parameterizado com regras elementares dando a essência das propriedades

pretendidas e de tipos de canais dando o protocolo esperado em canais de comunicação, constroi uma

declaração comportamental automaticamente, analisando os processos.

Palavras-chave cálculo-π, propriedades de animação, propriedades de segurança, sistemas de tipo
genéricos, actividade, codificações, escolha.

iv

v

Title Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Abstract In this thesis I present a generic semantic framework and sound type system suited for

analysing a wide variety of behavioural properties in π-calculus processes, both liveness properties such

as activeness (a generalisation of receptiveness), termination and reachability, and safety properties

such as determinism and isolation.

Dependency analysis is a central ingredient of this framework, implemented by dependency state-

ments describing process properties conditional on some resources to be provided by third-party pro-

cesses. Dependency statements are used as elementary ingredients of behavioural statements, logical

statements that precisely characterise negotiation of resources between a process and its environment.

Dependency analysis provides this framework with powerful compositionality : when arranging pre-

analysed (typed) components together, the resulting process’ type can be directly derived from those

of the components, with no need to re-analyse the entire process. Behavioural statements also inte-

grate primitives for describing selection (choices made by a process) and branching (choices offered

by a process).

The type system, parametrised with elementary rules giving the essence of the desired properties

and channel types giving communication protocols to be used on communication channels, automati-

cally constructs a behavioural statement by automatically analysing processes.

Keywords π-calculus, liveness properties, safety properties, generic type systems, activeness, en-
codings, choice.

vi

Acknowledgements

I wish to thank António, Kohei, Lucia, Nobuko, Simon, Uwe for their continued
and repeated help, advice and support, and Carlos for agreeing on very short
notice to act as my co-supervisor.

Thank you to my parents for financially supporting most of my expenses
during my studies, and for making me keep going when it looked like proving
theorems from this thesis would never be complete.

“This work is partially supported by SQIG — Instituto de Telecomunicações
and IST, Portugal, by Fundação para a Ciência e a Tecnologia, as well as the
EU FET-GC project Sensoria (IST-2005-16004).”

Contents

1 Introduction 1
1.1 Mobile Processes . 1
1.2 Equivalences and Encodings . 2
1.3 Behavioural Properties . 3
1.4 A Process and its Environment 4
1.5 Choice . 5
1.6 Dependency Analysis . 6
1.7 Decidability and Generic Type Systems 7
1.8 Proof-Carrying Behavioural Statements 9
1.9 Contributions of this Thesis . 10

2 Processes and Operational Semantics 13
2.1 Polyadic π-Calculus, Guarded Sums, Replication 13
2.2 Operational Semantics . 14

3 Simple Types 17
3.1 Parameter types . 17
3.2 Multiplicities . 18
3.3 Local and Remote uses . 18
3.4 Process Types . 19
3.5 Types as Triples . 20
3.6 Behavioural Statements . 21
3.7 Typed Transitions . 23
3.8 Behavioural Statement Composition 25
3.9 Process Type Composition . 25
3.10 Channel Instantiation . 27
3.11 Transition Operator . 28
3.12 Simple Semantics . 29

4 Universal Properties 31
4.1 Existential and Universal Resources 31
4.2 Universal Type Algebra . 32
4.3 Universal Semantics . 39
4.4 Universal Type System . 40
4.5 Verifying Protocols . 43
4.6 Properties . 43
4.7 Type System Tuning . 44
4.8 Responsiveness . 45

vii

viii CONTENTS

5 Existential Properties 47
5.1 Existential Type Algebra . 48
5.2 Existential Semantics . 50
5.3 Existential Type System . 55
5.4 Events and Non-Transitive Dependencies 57
5.5 Delayed Dependencies and Self-Name Passing 58
5.6 Properties . 60

6 Activeness 61
6.1 Introduction . 61
6.2 Branching Algebra . 65
6.3 Activeness Semantics . 66
6.4 A Typing Example . 69
6.5 Distributed Properties and τ -Activeness 71

7 Structural Analysis 73
7.1 Strategies and Annotated Process Types 74
7.2 Structural Semantics: Consistency 78
7.3 Structural Semantics: Completeness 83
7.4 Annotated Labelled Transition System 85
7.5 Annotated Type System . 89
7.6 Overall Soundness Proof (Proposition 5.6.4) 93
7.7 Structural Analysis for Process-Level Properties 94

8 Applications 95
8.1 Isolation . 95
8.2 Determinism . 96
8.3 Reachability . 98
8.4 Termination . 99
8.5 Deadlock-Freedom . 102

9 Further Reading 105
9.1 Activeness . 105

9.1.1 Sangiorgi: The Name Discipline of Uniform Receptiveness 105
9.1.2 Pierce, Sangiorgi: Typing and Subtyping for Mobile Pro-

cesses . 106
9.1.3 Kobayashi, Pierce, Turner: Linearity and the π-calculus . 106
9.1.4 Amadio et al.: The Receptive Distributed π-calculus . . . 106
9.1.5 Acciai, Boreale: Responsiveness in process calculi 107
9.1.6 Kobayashi: TyPiCal . 109
9.1.7 Kobayashi: Type Systems for Concurrent Programs . . . 111
9.1.8 Kobayashi and Sangiorgi: A Hybrid Type System for

Lock-Freedom of Mobile Processes 111
9.2 Other Properties . 112

9.2.1 Deng and Sangiorgi: Ensuring Termination by Typability 112
9.2.2 On Determinacy and Nondeterminacy in Concurrent Pro-

gramming . 112
9.3 Generic Type Systems . 112

9.3.1 Acciai and Boreale: Spatial and Behavioral Types in the
Pi-Calculus . 112

CONTENTS ix

9.3.2 Igarashi and Kobayashi: A generic type system for the
Pi-calculus . 113

9.3.3 Caires and Vieira: Spatial Logic Model Checker 113
9.4 Structural Analysis . 114

9.4.1 Bodei, Degano et al: Control Flow Analysis for the π-cal-
culus . 114

10 Conclusion 117

A Proofs 125
A.1 Proofs for Sections 3, 4 and 5 . 125

A.1.1 Auxiliary Lemmas . 125
A.1.2 Properties of ∼= (Lemma 3.6.2) 127
A.1.3 Composition Properties (Lemma 3.9.4) 127
A.1.4 Simple Correctness and Structural Equivalence (L. 3.12.2) 129
A.1.5 Closure Uniqueness (Lemma 4.2.4) 129
A.1.6 Normal Form (Lemma 4.2.13) 131
A.1.7 Composition of Disjoint Statements (Lemma 5.1.2) 132
A.1.8 Bisimulation and Type Equivalence (Lemma 5.2.7) 133

A.2 Subject Reduction . 134
A.2.1 τ -Reductions . 135
A.2.2 Output . 141
A.2.3 Input . 144
A.2.4 Replication . 144

A.3 Simple Correctness . 147
A.4 Proofs of Section 7 . 149

A.4.1 Subject Transitions (Lemma 7.4.5) 149
A.4.2 Completeness of Strategies (Lemma 7.4.6) 153
A.4.3 Runnability Safety (Lemma 7.4.8) 155
A.4.4 Strategy Application (Lemma 7.4.9) 157
A.4.5 Completeness and Correctness (Lemma 7.4.10) 158
A.4.6 Reduction and Composition Preserve consistency (Lem-

mas 7.5.6, 7.5.7) . 159
A.4.7 Closure Completes (Lemma 7.5.10) 160
A.4.8 Annotated Type System Soundness (Lemma 7.5.13) . . . 161

B Notation Index 163
B.1 Meta-variables . 163
B.2 Processes . 164
B.3 Multiplicities . 164
B.4 Resources . 164
B.5 Types and Behavioural Statements 165
B.6 Type Algebra . 165
B.7 Judgements . 166
B.8 Annotated typed Processes . 166

x CONTENTS

Chapter 1

Introduction

This thesis is about the use of dependency analysis to study the behaviour of
mobile processes.

1.1 Mobile Processes

Similarly to the λ-calculus being a foundational framework to study sequen-
tial functional programming, process calculi are formalisms providing theory to
reason about open, concurrent, distributed and mobile systems. A distributed
algorithm is one spanning many information systems like sensor networks, (phys-
ically) mobile agents, computers in a peer-to-peer network, or just processes in a
single computer. In order to precisely describe distributed processes, one needs
a parallel composition connective “|”, which, when applied to a number of pro-
cesses, indicates that they can run independently of each other. For instance
P1 |P2 |P3 |P4 represents a process with four independent components that may
be running on four different systems.

As the components may be located in different places, they can’t share in-
formation (like two threads of a program may access a common memory heap,
or like two of a computer would share a common memory), but must instead
rely on explicit communication to exchange information. Some calculi such as
Linda [CG90] use a broadcast model in which all participants of an algorithm
may access a common “tuple space” that serves as a unique communication
medium. Nominal calculi such as the Calculus of Communicating Systems or
CCS [Mil80] use named channels. In this thesis we will focus on nominal calculi.

Communication is implemented with two primitives, input a and output ā,
where a is the name of the communication channel. The prefix or sequence
connective “.” is used for synchronisation: a.P is a program that waits for a
signal on channel a, then executes P , and ā.P is a program that sends a signal
on channel a, then whenever it is received, proceeds with P . It should be noted
that a message can only be received by a single receiver, so a.P | a.Q | ā is a
program that non-deterministically runs one of P and Q, leaving the other one
deadlocked (assuming a doesn’t appear elsewhere in P or Q).

The π-calculus [MPW92, SW01] goes beyond synchronisation and permits
explicit information transfer by letting outputs carry values (a〈x1, x2, . . .〉), ab-
breviated a〈x̃〉, and inputs carry variables (a(y1, y2, . . .)), much like function

1

2 CHAPTER 1. INTRODUCTION

calls and function declarations in many programming languages.
Many extensions and variants of process calculi have been developed, to cover

a wide variety of purposes, such as the spi-calculus [AG97] having primitives
for encryption and decryption, a Distributed π-calculus [Hen07], having explicit
representation of computation sites whereby agents can move from one site to
another and can only communicate with each other when they are in the same
site. The Higher-Order π-calculus HOπ [San93], allows transmitting entire pro-
cesses over channels, much like web browsers download applets from servers and
execute them. It is also common to extend the basic π-calculus with primitive
data types and operators. Finally, actual programming languages have been
developed. Pict [PT00] is an experimental implementation closely matching the
π-calculus, while TyCO [Vas94] is an object oriented extension.

1.2 Equivalences and Encodings

With such a wealth of process calculi to choose from, two questions arise: do
these extensions merely bring convenience and shortcuts to the programmers
(and researchers), or do they fundamentally increase the expressive power of
the language? Should the answer be the latter (i.e. the languages are deemed
to be equally expressive), can programs, as well as theoretical results, applying
to one calculi be “translated” into corresponding ones into another one?

A key step in answering these questions consists of writing an encoding from
one calculus to another. Should faithful encodings exist in both directions be-
tween two calculi, they can reasonably be considered to have equivalent expres-
sive power.

I started my journey in the world of process calculi seven years ago [GNR04],
with this very question: do TyCO and Sangiorgi’s asynchronous π-calculus with
variants [San98] have the same expressive power?

Two calculi are equally expressive if there exist encodings [[·]] from one to
the other such that [Nes00]

• the encodings are distributed or compositional (e.g. [[P |Q]] = [[P]] | [[Q]])

• the encodings are fully abstract (e.g. P ≈ Q ⇐⇒ [[P]] ≈′ [[Q]] where ≈′
is some “suitable” equivalence relation.)

The interested reader may want to read [Par08] for an extensive survey of tech-
niques for assessing relative (and absolute) expressiveness of process calculi.

One goal of an encoding is to permit encoded processes to interact with
arbitrary processes of the target calculus that were not necessarily obtained
through the encoding.

A question immediately arises: what is a suitable equivalence relation for
this situation? Having (≈′) = (≈) is usually not feasible because the equiva-
lence relation typically needs to hide artifacts introduced by the encoding. For
instance we want to be able to encode in polyadic π-calculus (that only allows
transmitting names) expressions such as a〈ξ〉 where ξ is a complex structure that
may be of unbounded size (such as a list). The only way this can be achieved is
by first sending a name containing a pointer to the data to be transmitted, and
then transmitting the data small parts at a time. After the encoding, data is no
longer a primitive entity, and operations done on data are no longer atomic, so

1.3. BEHAVIOURAL PROPERTIES 3

usual equivalence relations may be able to distinguish normally indistinguish-
able processes by violating the semantics normally associated with data, thereby
breaking the full abstraction requirement.

One approach for defining a “suitable equivalence” is to build on barbed
congruence [SW01] but restricting which contexts are allowed:

Definition 1.2.1 (Post-Encoding Equivalence) Two encoded processes P
and Q are equivalent (written P ≈′ Q) if for all processes R well-behaved

with respect to both P and Q, (P |R)
•
≈ (Q |R) where

•
≈ is the usual barbed

bisimulation relation.

1.3 Behavioural Properties

The question we now need to answer is “what is a well-behaved process (with
respect to some encoded process P)?”. To see why we need to restrict which
processes may interact with an encoded process, consider the two following
processes:

P receives a value v on channel a, sends a signal on channel s and
then decodes value v (discarding the result).

Q receives a value v on channel a, then decodes value v (discarding
the result) and finally sends a signal on channel s.

Assuming value decoding is immediate, those two processes are indistin-
guishable for an external observer as both receive a value on a and then send
a signal on s (in case value decoding takes a measurable time, they can be
made bisimilar again by inserting silent actions of corresponding lengths at the
corresponding places).

However the encoded forms of these processes are, respectively, as follows1:

[[P]] receives on channel a a name u holding an encoding of value
v, then sends a signal on channel s, and finally sends a decoding
request on channel u, discarding the reply.

[[Q]] receives on channel a a name u holding an encoding of value
v, then sends a decoding request on channel u. After receiving the
reply, it sends a signal on channel s.

Now these two processes can be distinguished by a process R sending a
(private) name u and ignoring any decoding requests: [[P]] will send the success
signal but [[Q]] will not, as it will be blocked waiting for a reply to its decoding
request.

More generally, test processes R must provide the “FAIR Semantics”2 on
channels holding value encodings:

1. Functionality : Once sent, the transmitted data is fully determined, and
does not change from one access to the other. This property is covered in
Section 8.2, where it is called “determinism”.

1Although there are other ways to encode these processes, all exhibit a similar difficulty.
2All credit goes to Uwe Nestmann for the name.

4 CHAPTER 1. INTRODUCTION

2. Activeness: The data can be accessed by the receiver as many times as it
wants.

3. Isolation: The sender has no way of knowing when and how many times
the data is decoded by the receiver.

4. Responsiveness: A decoding of the data always succeeds and terminates
after a finite time.

I spent the first years of my PhD developing semantics and type systems
guaranteeing those properties as a whole, but soon enough it became obvious
that, as rightfully pointed out by conference reviewers at the time, this work de-
serves to be more modular (to permit cherry-picking desired properties rather
than the monolithic all-or-nothing characterisation) and generic (to be easily
generalisable for other properties). Although encodings were the initial moti-
vation for this research, behavioural type systems are also useful for verifying
algorithms, for instance responsiveness (Section 4.8), termination (Section 8.4)
and deadlock-freedom (Section 8.5) are important properties for long-running
applications such as web-servers or for algorithms running on devices difficult
to service, like sensor networks or space probes.

In this thesis we will not work directly on encodings but rather on character-
isation of behavioural properties in mobile processes. We will also focus on the
π-calculus to fix the notation, as most of the material can be painlessly applied
to other process calculi.

It must be noted at this point that the requirement that encodings should
be distributed is not as absolute as previously thought. Refer to [BPV05] for
an encoding of π-calculus with data into the base π-calculus, that is merely
weakly compositional [Par08], and uses a central value server to avoid the above
difficulties (neither encoded processes nor test processes may carry encoded
values, instead they register them into the value server, that guarantees all
“FAIRness” properties by construction).

1.4 A Process and its Environment

Parallel composition allows putting together several pre-written components to
build a more complex application. It is therefore natural that, when reasoning
about such a component, whether it is to specify its desired behaviour or ver-
ify an actual implementation, one should put an emphasis on interaction with
unspecified or under-specified third-party components.

This theme comes in various flavours in the π-calculus literature.

This is for example found in equivalence relations used on mobile processes.
The barbed congruence relation [SW01] states that two processes P and Q are
equivalent if, no matter in which context C[·] they are put, P and Q provide
the same barbs (offers or attempts at communication with the environment).

Another instance is the use of labelled transitions. The transition a.P
a−−→ P

implicitly makes the assumption that the process found a communication part-
ner ā, not found inside the a.P notation, but rather in an unspecified third-party
process. Labelled transitions are central to equivalences such as bisimulation or
trace equivalence.

1.5. CHOICE 5

One consequence is that, when specifying, designing, writing, analysing and
verifying a process, one should keep in mind the fact that the process may be
running together and interacting with other unspecified processes. We shall
the use the words local process when referring to a process being studied, while
remote or environment refers to the composition of all those other processes.

Therefore, when writing a software component in a mobile calculus it quickly
becomes important to specify in what ways the environment is permitted to
interact with it. The restriction connective (νa) can be used as a crude first
step in that direction, in that it permits specifying that a channel should be
private or internal to a process and the environment is not permitted to interfere
with it (it of course has other uses, such as the creation of one private channel
for every request to a replicated server). Finer limitations not expressed in the
process syntax would include permitting access to only one side of a channel
(“third-party processes may output on a, but not input on it”), limiting the
number of uses (“third-party processes must do exactly one output on a”), etc.

This last example is particularly interesting in that it changes when the
process interacts with the environment: if it goes through a labelled input tran-

sition
a−−→, it is assumed that this transition corresponds to an output that

was sent on a from a third-party process, and therefore the constraint on the
environment must be changed to (“third-party process must not do any output
on a”).

1.5 Choice

In process calculi, processes can make and communicate choices, a fundamen-
tal component of data representation (where a piece of data matches one of a
set of patterns), of object-oriented style programming (where a call matches
one method out of a set) or session-based programming (during a conversation
between a client and a server, both sides are at times permitted to drive the
protocol one way or another). We shall use branching and selection to capture
properties in process constructs necessary for such usage patterns.

For example, Milner’s encoding of Boolean values [Mil93] represents Boolean
values as receivers on two parameter channels: True replies to queries with a
signal on the first parameter (! b(tf).t̄) and False with a signal on the second
parameter (! b(tf).f̄). We say those two processes are instances of selection
(sometimes called internal choice in the literature) because they pick a specific
behaviour out of a set of mutually exclusive permissions, by sending a signal
to one parameter rather than to the other. A Random Boolean could be im-
plemented as ! b(tf).(νx) (x̄ | (x.t̄+x.f̄)), in which the selection is performed “at
run-time” by the sum (“+”). A selection made by one process may cause branch-
ing (also commonly called external choice) in another process. Branching is typ-
ically implemented with the π-calculus sum operator, as in b(νtf).(t.P+f.Q),
which executes P if b is True, and Q if b is False. For example, the “r = a and b”
logical circuit can be implemented as follows in the π-calculus (see Section 2.1).

A = ! r(tf).a(νt′f ′).(t′.b〈tf〉+f ′.f̄), (1.1)

Upon receiving a request on r, it first queries a. If it returns true (t′) then
r returns the same as b. If it returns false instead, r itself returns false (f). So,

6 CHAPTER 1. INTRODUCTION

depending on a and b’s behaviour, either a signal will be sent on t, or one will
be sent on f (but never both).

1.6 Dependency Analysis

Dependency Analysis is a way to specify the behaviour of a process through
logical formulæ, and we use the notation

(∆l J ∆e)

where ∆l and ∆e are behavioural statements, to mean that the local process
behaves like ∆l, and the environment must behave like ∆e.

We will introduce a labelled transition system on Typed Processes (the pair
of a process and a type), that is able to model simultaneous evolution of a
process (“∆l” above) and constraints on the environment (“∆e” above), as in
the example seen at the end of Section 1.4.

Describing components of an open system is not only about limiting what in-
teractions are permitted, but also about how third-party processes may provide
services required by a process to complete a task. This is covered by dependen-
cies. The most general form is provided by adjoin operators. For instance the
English expression “If ∆e holds in the environment then ∆l holds in the local
process” is formally written ∆l/ ∆e. The dependency operator / can be seen
as an arrow on a graph, similarly to the dependency graphs used by Yoshida,
Berger and Honda in [YBH04], or by Acciai and Boreale in [AB08a]. The differ-
ence in meaning between “(∆l J ∆e)” and “(∆l/∆e)” may seem rather subtle,
so we will come back to it (in Section 4) to explain it in more detail.

Dependency statements are put together using the usual ∨ and ∧ connec-
tives. Selection or disjunction ∆1∨∆2 holds in a process if its behaviour matches
(at least) one of the ∆i. Conjunction ∆1 ∧∆2 holds in a process if both ∆i do.
Dependency statements connects resources ranged over by Greek letters α, β
and γ. A resource is typically a behavioural property such as activeness or deter-
minism on some channel, although we’ll also see resources involving more than
one channel (branching activeness, page 63), or no channel at all (process-level
properties, page 94). The statement > always holds and ⊥ never does3.

In summary we use expressions of the following form when making state-
ments about a process:

∆ ::= (∆/∆)
∣∣ (∆ ∨∆)

∣∣ (∆ ∧∆)
∣∣ > ∣∣ ⊥ ∣∣ γ (1.2)

We call productions of this grammar behavioural statements. Note how the
grammar is essentially that of propositional logic statements, the only custom
item being resources γ, which greatly simplifies manipulating behavioural state-
ments and understanding their semantics.

Dependency Analysis covers ways of constructing such statements and using
them to infer properties about process behaviour.

3> could be considered as an abbreviation of ⊥/ ⊥. To keep technical work as simple as
possible, however, we will instead show how behavioural statements can be reduced to a form
where / only appears in statements of the form γ/ ε where ε is a statement not using / , an
impossible endeavour if > isn’t a primitive.

1.7. DECIDABILITY AND GENERIC TYPE SYSTEMS 7

Note how most behavioural properties are related to the concept of depen-
dency. Consider the forwarder

! a(x).b〈x〉

that just forwards every request to b.
Processing caused by a request sent to a eventually terminates if and only

if processing caused by a request sent to b does. The a-server may cause an
information-leak about requests if and only if the b-server does. Requests sent
to a are eventually answered if and only if requests sent to b are eventually
answered. Assuming a and b have the same protocol, as an a-server this process
respects the protocol if the b-server does. As a b-client this process respects the
protocol if the a-client does.

1.7 Decidability and Generic Type Systems

A process type Γ is a structure giving a form of contract between a process and
its environment, integrating local and environment behavioural statements with
channel types describing the protocols to be used at channels, and what type of
data they can carry. Whether a process actually holds its part of such a contract
is formally specified with semantic definitions. Validity of a particular process-
type pair (Γ;P) (called a typed process) is in general undecidable as processes
can have infinitely large transition graphs, making it impossible to fully verify
the behaviour of a process. The natural numbers and operators on them can
actually be encoded in the π-calculus, which effectively proves undecidability of
type correctness.

Instead, we use a type system, a set of rules that tell how to construct a
behavioural statement out of a process, in a decidable fashion. My type system
is sound in the sense that all statements it produces are correct with respect to
the semantics. It is however not complete, in the sense that it will sometimes
fail to notice that a process possesses some property, or will sometimes claim
that a resource α depends on the environment providing some other resource β
when in reality it doesn’t.

As in illustration of the distinction between semantic correctness and typabil-
ity, the former being (by definition) complete and the latter decidable, consider
a program iterating through all even numbers larger than two and then trying to
decompose them into sums of two prime numbers (again, by checking all smaller
prime numbers one by one). If the program ever reaches an even number that
doesn’t possess such a decomposition, it sends a signal on a channel s̄. Such a
program, although quite long due to the need to encode natural numbers and
checking for primes, can rather easily be written in the π-calculus. The question
of whether the s̄-signal will eventually be fired is simply asking which of s̄A (“s̄”
will be fired) and s̄N (“s̄” won’t be fired) is a correct statement for that program
(the program being deterministic, it is easy to show that precisely one of those
two types is correct). This question is equivalent to the Goldbach Conjecture
and its answer is not known as of today. Passing that π-calculus program to our
type system (or really any type system written today and known to be sound
and decidable4) would just return a neutral type, i.e. s̄ can’t be guaranteed to

4I said known to be so one can’t “cheat” and design a type system that returns the right
type when it recognises the Goldbach-testing program

8 CHAPTER 1. INTRODUCTION

ever be fired, and can’t be guaranteed to never be fired, either.
Typed transition systems (Section 3.7) predict the evolution of processes from

a behavioural point of view (what properties are lost and gained by the process
as it interacts with the environment), so that process types effectively provide
behavioural information for the entire lifetime of a process and not merely in
its current state.

The semantic correctness and type system definitions I will propose in this
thesis are generic in the sense that they do not work with particular properties,
but instead are parametrised with respectively immediate correctness predicates
and elementary rules that give the essence of desired properties.

Regarding semantics, given a “good state” predicate, properties can be clas-
sified into two groups:

• safety properties are those that require the process to constantly be in a
“good” state, e.g. any input and output on the same channel and both
ready to fire and must have the same number of parameters, a process
declared deterministic must never face a choice, and so on.

• liveness properties are those that require a process to eventually reach a
“good” state, e.g. a channel declared active must eventually become ready
to fire.

Similarly, given elementary rules saying what properties is provided by a
single step a〈x̃〉 or a(ỹ) in a process, the type system recognises two kinds of
properties:

• universal resources are those that must be provided everywhere in the
process (usually vacuously), i.e. if a universal resource is not provided by
P then it won’t be provided by P |Q either.

• existential resources must be provided somewhere in the process, i.e. if an
existential resource is provided by P then it is also available in P |Q.

Note how the two classes of semantics differ in a temporal sense (“con-
stantly” versus “eventually”) and the two classes of elementary rules have the
corresponding difference but in a spatial sense (“everywhere” versus “some-
where”), and indeed the soundness theorems hold when connecting universal
rules to liveness semantics and existential rules to safety semantics. It is easy
to see that attempting to use liveness semantics with an universal rule or safety
semantics with an existential rule would fail as for instance the idle process 0
vacuously enjoys all universal and safety properties, while that process enjoys
no existential or liveness property.

Apart from this essential distinction, the generic type system treats all prop-
erties identically with no understanding of their semantics, and the soundness
theorems show that, if elementary rules suitably imply the corresponding “good
state” semantic predicates, statements produced by the instantiated type system
are correct with respect to the semantics.

Note that universal and existential properties give rise to safety semantics
and existential properties give rise to liveness semantics or, more accurately, the
soundness theorems only hold when this correspondence between semantics and
elementary rules is

1.8. PROOF-CARRYING BEHAVIOURAL STATEMENTS 9

Although one can conceive properties that won’t fit neatly in either of these
categories (we will discuss a few examples in the course of this thesis) we will
see that it is sufficient to cover a wide range of behavioural properties, including
responsiveness (ability to reliably conduct a conversation), activeness (ability to
sending/receiving on a channel), isolation (lack of measurable side effects), de-
terminism, reachability (also known as dead code elimination), termination and
deadlock-freedom. These cover more than what is necessary to verify encodings.

1.8 Proof-Carrying Behavioural Statements

As the operational semantics of processes are usually given by labelled transition
systems (see Definition 2.2.3), the behaviour of a process is usually expressed
exclusively in terms of transition sequences, but this has a number of shortcom-
ings, specifically because it usually contains more information than required.

For instance transition sequences distinguish between a|b a−−→ b−−→ 0 and

a|b b−−→ a−−→ 0, although those two can be considered as essentially equivalent.
Secondly, in a complex system containing loosely related components, a partic-
ular run may contain transitions irrelevant to the computation being studied,
and those transitions could be simply removed without harm.

Finally, some work is needed to merge transition sequences. For example the

a|b a−−→ b−−→ 0 sequence can be thought of resulting of the merging of a|b a−−→ b

and a|b b−−→ a. This last point is important to deal with interference. For

instance one may want to show that any transition sequence P
µ̃−−→ P ′ can

be continued into P
µ̃−−→

µ̃′0−−−→ Q′ in such a way that one of those transitions
is a communication on some channel s. This is obtained by constructing a

sequence P
µ̃0−−−→ Q with that property, and showing it can always be merged

with P
µ̃−−→ P ′.

To deal with all these issues we introduce liveness strategies (Definition 7.1.1)
that basically indicate which components of a process communicate with which.
We will show how a particular transition sequence can be transformed in a
strategy (or set of strategies in case it mingles unrelated computations), and
reciprocally how a strategy can be turned into a transition sequence.

While behavioural statements make claims about processes, they provide
no way of verifying those claims. Annotating them with strategies we obtain
proof-carrying behavioural statements (Definition 7.1.7), which record how the
various components were obtained and can easily be transformed into process
behaviour.

Although I originally designed them as a proof method, liveness strategies
turned out to be interesting in their own right as a means to study the be-
haviour of a process. A characterisation of determinism is trivial to do using
liveness strategies, compared to a definition based on transition labels (Sec-
tion 8.2). As they permit distinguishing processing of a particular request from
unrelated computations, they can be used to transform a process-level property
such as determinism or termination into corresponding channel-level properties
(Section 7.7).

10 CHAPTER 1. INTRODUCTION

1.9 Contributions of this Thesis

In closing, here is a detailed account of the technical contributions brought by
this thesis. I’ll start from the giants whose shoulders I’ve been standing on.

The target calculus, the synchronous π-calculus with mixed sums and repli-
cation (Section 2.1), along with its early labelled transition system (Section 2.2),
is well-known and has been widely studied in the past, although I applied some
rather inconsequential changes for technical convenience. The idea of using types
and type systems for verifying process behaviour is also well-explored. Some ex-
amples, including generic type systems, are covered in Section 9. Multiplicities
were explored by Sangiorgi [San99] and others; independent multiplicities for
both ports of a channel were mentioned in Accai and Boreale’s [AB08a] on
Responsiveness. Kobayashi took the concept beyond what is covered in this
thesis, with channel usages [Kob02b, Kob02a]. A section in [IK01] suggests
using channel types with separate components for inputs and outputs for ex-
tra expressiveness, rather than inferring one side from the other, much like my
channel types (Section 3.3). Dependency analysis, and more specifically depen-
dent resources have been explored for instance by Honda, Berger, and Yoshida
[YBH04]. The notation I use for behavioural statements (Section 3.6) uses ∧
and ∨ from propositional logic, and the dependency connective / , also known as
“assume-guarantee” is for instance used by Honda. Finally, my liveness defini-
tion (Section 5.2) is reminiscent of Game Theory, and I used the word “strategy”
to emphasise this fact.

The contributions of this thesis are the following.

1. Process Types (Section 3.4). Seeing the interface between a process and
its environment whose parameters are the process’ free names, a process
type is simply a special case of channel type.

2. Behavioural statements (Section 3.6) embedded in process and channel
types permit describing resource negotiation with more expressiveness
than usual approaches.

3. An extensive type algebra covers spatial (composition �, subtraction \,
and output-composition ⊗, in Section 3.9), logical (equivalence ∼=, weaken-
ing �, and reduction ↪→, in Sections 3.6 and 3.11), and dynamical aspects
(transition o in Section 3.11) of process types.

4. Safety (Section 4.3) and especially liveness semantics (Section 5.2) inte-
grate a reliability component, to provide meaningful results that hold with
real schedulers.

5. The types and the type systems are equipped to deal with and describe
choice, making the type system in Chapter 6, to my knowledge, the first
static type system characterising liveness in the presence of choice.

6. My work on structural analysis, initially developed as a proof technique
for soundness of the type system with respect to liveness, proved useful in
translating process-level properties to channel-level ones, on the semantic
level, as well as permitting a compact definition of confluence.

7. The types, type algebra and type systems are generic:

1.9. CONTRIBUTIONS OF THIS THESIS 11

• Behavioural statements integrate arbitrary properties (Section 4.1),
for which type operators require no more information than whether
they are universal or existential.

• Semantics are instantiated with semantic predicates that specify if
a resource is provided at a specific point in a process (Section 4.3).
Note that this comes in contrast with other generic type systems that
require semantics to be specified in an ad hoc specification language
[AB08b], or be to predicates on process types [IK01].

• Type systems are instantiated with elementary rules that specify the
properties of basic process components (Sections 4.4 and 5.3).

8. Regarding the actual properties covered in this thesis, responsiveness,
activeness and isolation are novel and determinism is generalised to a
channel-level property:

• Responsiveness (Section 4.8) is a property of channels that respect
the protocol defined in channel types.

• Activeness (Section 6) generalises receptiveness, both by distinguish-
ing input and output activeness and including branching activeness.

• Isolation (Section 8.1) characterises side-effects.

• Determinism has been studied with more or less the same semantics
through dedicated type systems (for instance, [Nes96]), but usually
as process-level properties (i.e. the type system tells whether the
entire process satisfies the given property), as opposed to channel-
level analysis (Section 7.7) that indicates which channels enjoy it.

• Reachability (Section 8.3), termination (Section 8.4) and deadlock-
freedom (Section 8.5) have been studied before but I included them
to demonstrate the expressiveness of my generic type systems.

At times, I have also come up with concepts or techniques, only to discover
later on that they had been independently developed beforehand. When that
happened I tried to synchronise my notation and terminology with pre-exiting
ones.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Processes and Operational
Semantics

2.1 Polyadic π-Calculus, Guarded Sums, Repli-
cation

In order to have a concrete theory and type systems we fix the target calcu-
lus, specifically to the synchronous polyadic π-calculus with guarded sums and
replication, but most of the material can be painlessly applied to other process
calculi. We use the grammar given in Table 2.1, where σ (hereafter usually
omitted) stands for x’s channel type, whose definition is given later. Refer to
[Par01] for a more detailed tutorial on the π-calculus.

The process grammar creates a number of limitations on which processes can
be written, that have no effect on the expressiveness (Specifically, all process of
the fully general π-calculus is strongly bisimilar [SW01] with one produced by
Table 2.1), yet make some proofs easier. First, only guards can be replicated,
and they can be replicated only once. This does not limit the expressiveness as
! !P ∼ !P , and both ! (P |Q) and ! (P +Q) are strongly bisimilar to (!P) | (!Q).
Note how the latter simplification removes the need for a (Rep-Comm) rule
[SW01] in the labelled transition system, that lets one instance of a replicated
process communicate with another, as in ! (a.T + ā) −→ T | ! (a.T + ā) that gets
transformed to ! a.T | ! ā −→ T | ! a.T | ! ā. Another limitation is that the
terms of a sum must be guarded, so that for instance (a|b) + (c|d) is not a valid
process, but can be replaced by the strongly bisimilar a.b+ b.a+ c.d+ d.c.

Before starting, a little vocabulary, as it is used in this thesis: “Channels”
and “names” have their usual π-calculus meaning, a name being the syntactic
element. Unless noted otherwise, lower case Latin letters a, b, c, d, r, x, y, z are
names. Through renaming, it may happen that two initially different names are
assigned to the same channel. A port of a channel a is either its input (“a”) or
output (“ā”) half. The letters p and q range over ports. A tilde ˜ over a symbol
stands for a (usually ordered) sequence of elements whose individual elements
are represented by the same (tilde-less) symbol with numerical indexes. For
instance x̃ stands for x1, x2, . . . , xn.

Free names fn(P) of a process P are defined as usual, binders being (νx)P

13

14 CHAPTER 2. PROCESSES AND OPERATIONAL SEMANTICS

Processes: P ::= (P |P)
∣∣ (νx : σ)P

∣∣ S
∣∣ 0

Components of a parallel composition: S ::= (S+S)
∣∣ G.P

Guards: G ::= T
∣∣ !T

Non-replicated guards: T ::= (νx : σ)T
∣∣ a(ỹ)

∣∣ a〈x̃〉

Table 2.1: Process Syntax

(binding x in P) and a(ỹ).P (binding ỹ in P).

Definition 2.1.1 (Subject, Objects and Multiplicities of a Guard)

• The subject port of a guard G is defined with sub(a(ỹ))
def
= a and

sub((νz̃ : σ̃) a〈x̃〉) def
= ā

• The object names are obj(a(ỹ))
def
= ỹ and obj((νz̃ : σ̃) a〈x̃〉) def

= x̃

• The bound names are given by bn(a(ỹ)) = ỹ and bn((νz̃ : σ̃) a〈x̃〉) = z̃

• Finally G has a multiplicity #(G) equal to ω if it is replicated, 1 otherwise.

Empty object sets and trailing 0 are usually omitted, writing a and ā instead
of a() and a〈〉, and G instead of G.0.

In order to make some examples easier to read we shall sometimes remove
unused bindings, reorder components of a parallel composition or drop idle
processes. In other words, we identify processes up to structural congruence
in the examples (but this relation plays no significant role in the theory itself).
Structural congruence is also helpful to give a succinct definition of top-levelness.

Definition 2.1.2 (Structural Congruence) Structural Congruence on pro-
cesses is the smallest congruence relation ≡ such that:

• (νx) 0 ≡ 0, and (for x 6∈ fn(Q)) (νx) (νy)P ≡ (νy) (νx)P , ((νx)P)|Q ≡
(νx) (P |Q),

• P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R,

• P+Q ≡ Q+P , P+(Q+R) ≡ (P+Q)+R, and

• (P =α Q)⇒ (P ≡ Q) (α-renaming).

2.2 Operational Semantics

We end this brief coverage of the π-calculus with its operational semantics.
Rather than having a “program counter” and a fixed program like is common
in sequential programming, execution of a π-calculus process P is expressed by
a sequence of transitions

P
µ−−→ P ′

where µ contains any input or output done from or to the environment, and P ′

contains what remains to be executed. For instance the process a.b.c̄ (that waits

2.2. OPERATIONAL SEMANTICS 15

for a signal on a followed by a signal on b before sending one on c) is executed
as follows:

a.b.c̄
a−−→ b.c̄

b−−→ c̄
c̄−−→ 0

Remember that the first three processes have an implicit 0 at the end, which
must be written explicitly in the fourth, as it is no longer prefixed.

Definition 2.2.1 (Transition Labels) Transition labels, ranged over by µ,
are given by

µ ::= τ
∣∣ a(x̃)

∣∣ (νz̃ : σ̃) a〈x̃〉 where a 6∈ z̃ ⊆ x̃

Note that (νb) a〈abab〉 and a(aa) are valid transition labels.

Definition 2.2.2 (Subject and Objects of a Transition)

• The subject port sub(µ) of a transition label µ 6= τ is sub(a(x̃))
def
= a or

sub((νz̃) a〈x̃〉) def
= ā.

• The set of a transition’s objects obj(µ) is given by obj(a(x̃))
def
= x̃,

obj((νz̃) a〈x̃〉) def
= x̃ and obj(τ) = ∅.

• Bound names bn(µ) of µ are bn((νz̃) a〈x̃〉) = z̃, and bn(µ) = ∅ for other
cases.

• The set n(µ) of names in a transition is defined as n(a()̃) = x̃ ∪ {a},
n((νz̃) a〈x̃〉) = x̃ ∪ {a} and n(τ) = ∅.

Note that subjects and objects of guards and of transition labels usually co-
incide, except that some guards like ! a can’t be transition labels and some
transition labels like a(a) can’t be guards.

Definition 2.2.3 (Labelled Transition System) Table 2.2 inductively de-
fines a transition relation on processes, and a process P is said to have or

do a µ-transition to process P ′, if P
µ−−→ P ′.

Process P reduces to P ′, written P −→ P ′, if P
τ−−→ P ′. It weakly reduces

to P ′, written P =⇒ P ′ if P −→ · · · −→ P ′ for any number (including zero) of
reductions.

Finally, P has or does a weak µ-transition to P ′, written P
µ

==⇒ P ′, if

P =⇒ µ−−→ =⇒ P ′.

The (Open) and (Com) rules together demonstrate how a private communi-
cation channel can be established between two components of a process, using
scope extrusion, a distinguished feature of π-calculi. The following example (in
a π-calculus extended with numbers) shows how a client (on the left) sends a
query to a server (on the right). The scope of the private reply channel r is ex-
truded when the client sends the request, and the z 6∈ n(µ) condition of (New)
makes sure the reply can’t be intercepted or faked by a third-party:

(νr) a〈r〉.r(y).Q | ! a(x).x〈2〉 −→ (νr) (r(y).Q | r〈2〉) | ! a(x).x〈2〉 −→
(νr) (Q{2/y}) | ! a(x).x〈2〉

16 CHAPTER 2. PROCESSES AND OPERATIONAL SEMANTICS

−

a〈x̃〉.P
a〈x̃〉
−−−−→ P

(Out)
−

a(ỹ).P
a(x̃)
−−−−→ P{x̃/̃y}

(Inp)

P
(νỹ:θ̃) a〈x̃〉
−−−−−−−−−→ Q z ∈ x̃ \ ({a} ∪ ỹ)

(νz : σ)P
(νz:σ,ỹ:θ̃) a〈x̃〉
−−−−−−−−−−−−→ Q

(Open)

P
µ−−→ P ′

!P
µ−−→ P ′ | !P (Rep)

P
µ−−→ Q z 6∈ n(µ)

(νz : σ)P
µ−−→ (νz : σ)Q

(New)

P
µ−−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−−→ P ′ |Q Q |P µ−−→ Q |P ′ (Par)

P
(νz̃:σ̃) a〈x̃〉
−−−−−−−−−→ P ′ Q

a(x̃)
−−−−→ Q′

P |Q τ−−→ (νz̃ : σ̃) (P ′ |Q′)
Q |P τ−−→ (νz̃ : σ̃) (Q′ |P ′) (Com)

P
µ−−→ P ′

P+Q
µ−−→ P ′ Q+P

µ−−→ P ′
(Sum)

P =α P
′ P ′

µ−−→ Q′ Q′ =α Q

P
µ−−→ Q

(Cong)

Table 2.2: Labelled Transition System

Chapter 3

Simple Types

In this section we introduce channel types (that describe what protocol must
be used on a channel) and process types (that describe both the properties of a
process and what is expected from its environment).

A first important fact to note when studying processes is that they often
work with many classes of channels with different requirements depending on
their role in the program.

This is the reason for introducing channel types: rather than expressing
properties of a process as a whole, we focus on channels, and associate channel
types (written as σ) to names.

Channel types describe how a process may interact at a channel. A process
which exhibits the behaviour declared in channel types is said well-behaved. We
can then introduce typed processes that behave correctly as long as they only
interact with well-behaved processes.

3.1 Parameter types

As names carried over channels can themselves be used as channels, it becomes
quickly obvious that a channel type should include the types of its parameters,
like Milner’s sorting types [Mil93].

For instance, consider the process P = a(x).x̄ | a〈b〉.b(y).ȳ, which reduces

to P
τ−−→ b̄ | b(y).ȳ. If a’s type does not provide its parameter type, P is not

in error right away, but exhibits an arity mismatch after the reduction: The
parameter-less output x̄ just requires x to be parameter-less, b(y).ȳ requires b
to have one parameter, and a〈b〉 requires a to carry one parameter.

This suggests the notation σ ::= (σ, σ, . . . , σ) for a channel type (whose
recursion ends at parameter-less channels, written ()). In the above example,
the left component requires a to be of type σa = (σx) = (()), while the right
component requires the type σa = (σb) = ((σy)) = ((())) for a, making the type
mismatch obvious. A formal definition of errors, including arity and parameter
type mismatches, is given in Definition 3.12.1.

17

18 CHAPTER 3. SIMPLE TYPES

3.2 Multiplicities

Consider the following situation:
A process A sends a value v to a process B, which then sends a reference to

the same value to process C. As explained before, A actually creates a process
[[v]]u encoding the value v into channel u, and sends the name u to B. B then
sends the same name u to C. Both B and C, to decode the value, send a
message on u, which is then replied to by A. Now C has the potential to change
the value v as it appears to B, by creating another receiver on u. Now, if the
scheduler is fair, on average one half of the decoding requests sent by B will
actually be intercepted by C.

A simple way to solve this issue is with the concept of multiplicities [KPT99,
San99], which, in their most general form, tell for a channel how many times it
may appear in input (respectively, output) subject position. For instance, both
ports of a appear in a|(νb) b.ā (even though one is deadlocked), and a’s input
is used once and b not used at all in (νcd) (c〈a〉 | d〈b〉 | c(x).x | d(y).0). We also
need to distinguish whether an occurrence is replicated (as a in ! a(x).x̄) or not.

The above issue can now be solved simply by declaring that u’s input port
has precisely one (replicated) occurrence in subject position, rendering C unable
to create one more occurrence without being rejected by a type checker.

The encoding scenario involves the following multiplicities:

1. Uniform or ω names such as u in the example have one replicated input
and an arbitrary number of outputs, replicated or not.

2. A decoding request is a message of the form u〈l〉 where l is linear, meaning
that it must occur exactly once in output (for the u-server to send a reply)
and exactly once in input (for the request sender to receive the reply).

3. Plain names are those that do not have any requirement.

Other cases may occur, as in the internal choice ā | a.P | a.Q, where the
output port must occur exactly once, and the input port at least once.

Rather than constructing a list of such channel classes we choose to define
port multiplicities (ranged over by m), and record multiplicities independently
for input and output ports. To cover the cases seen so far we need three multi-
plicities: 1, ω and ?, standing respectively for “exactly one non-replicated use”,
“exactly one replicated use” and “no constraint”.1 We will also need (already
in the next section) a multiplicity 0 for ports that must not be used at all.

A natural way of writing this information is to put multiplicities as exponent:
σ ::= (σ̃)mi,mo , where mi is the input multiplicities and mo the output

multiplicities. For instance
(
(σ̃)1,1

)ω,?
would be the type for u in the encoding

example, where σ̃ describes how such a request is replied (and depends both on
the particular encoding and the source calculus type of the encoded value).

3.3 Local and Remote uses

All examples we have considered so far have been input-output-alternating, in
that input processes only output on their parameters. A counter-example is a

1The “At least one” case is obtained using ? together with “activeness”, as shown later.

3.4. PROCESS TYPES 19

“server creator” ! a(x).!x(y).Q which creates a one parameter server with body
Q on all names sent to it. In that example, a type for a would be of the form
((σ)ω,?)

ω,?
. However exactly the same type would be given in the case where

the input on x is provided by the output of a (as in a〈b〉.! b(y).Q), and yet
composing these two processes no longer respects the channel type.

Continuing with the calculus encoding example, we can’t require the target
processes to have input-output-alternation without requiring processes of the
source calculus to have that property (which is most of the time an unreasonable
assumption).

This example shows that giving up the input-output-alternation property
requires adding information to channel types as to how uses of the parameters
are divided between the input and output side of the channel. One way of
expressing this information is in terms of a local/remote separation, which is
useful because it can easily be adapted to express the interface between a process
and its environment, as we will see in the next section.

Instead of merely recording a total number of port uses for a channel, we
write the local and the remote uses separately. To fix a notation, we write α/β
to mean α is local and β is remote.

For the parameter uses, we take, as a convention, the point of view of the
input process. For instance, consider a two linear parameter channel, whose
first parameter is alternating and second is not, as in:

a(xy).(x̄|y) | a〈bc〉.(b|c̄) (3.1)

The first parameter has multiplicities 0, 1/1, 0, while the second has 1, 0/0, 1.
Note that this issue only applies to parameter types, not to (top-level) channel

types. We will provide a similar extension for the channel types in the next
section, but, for the moment, distinguish parameter types σ and channel types
π ::= (σ̃)mi,mo . This gives the following syntax for parameter types: σ ::=
(σ̃)mli,mlo/mri,mro , where l stands for “local” (i.e., channel’s input port), r is
remote (channel’s output port), i is parameter input and o parameter output.

For instance, 3.1 has, as a type for a, (()0,1/1,0, ()1,0/0,1)1,1 (in order, a’s
input does zero input on x, one output on x, one input on y and zero output on
y, while a’s output does one input on b, zero output on b, zero input on c and
one output on c). The outer 1, 1 exponent means that a is a linear name, i.e. is
used once in input and once in output.

Note that, even though in this example the parameter multiplicities look
very symmetric they need not be so. For instance the type (()0,?/?,?)1,1 is for
a channel whose input side may only use the parameter in output position, but
whose output may use the parameter without restrictions.

3.4 Process Types

In this section we propose a way to use the channel type notation to describe
entire processes, with process types.

To explain the similarity between channel and process types we consider the
interface between a process P and its environment as a special kind of channel
whose parameters are the names free in the process. For instance if z̃ = fn(P)
and a is a fresh name, then P ’s process type is a’s channel type in a(z̃).P . E

20 CHAPTER 3. SIMPLE TYPES

being a process representing the environment, interaction between P and E may

then be modelled as τ -reductions following a(νz̃).E | a(z̃).P
τ−−→ (νz̃) (E |P).

Using the notation introduced previously, we get Γ ::= (z1 : σ1, z2 :
σ2, . . . , zn : σn)1,1 as a notation for a process type, where zi covers z̃ = fn(P).

Two things can be noted in that expression. The first is that the exponent
1, 1 is rather uninteresting (it just means “there is one process and there is one
environment”). The second is that the σi are of the form (σ̃)mli,mlo/mri,mro

rather than (σ̃)mi,mo , i.e. they are parameter types rather than channel types.
Note that the local/remote terms make sense now, as these multiplicities tell
how the channel usages are divided between local (P) and remote (E).

Consider for example the process P = ! a(x).x̄. Wrapping it into an in-
put as described above gives b(a).P . In that process, the channel type for
b (and therefore the process type for P) is (a : (()0,1/1,0)ω,0/0,?)1,1. (The
“a :” label is used because channel names are not numbered and ordered
like channel parameters, but it remains essentially the same as a parameter
type.) Now consider a process E = a〈t〉.t acting as the environment for P .

The interaction P
a(t)
−−−−→ P |t̄ t̄−−→ P with that process corresponds to the

reduction b(a).P | b(νa).E −→ (νa)
(
(! a(x).x̄) | (a〈t〉.t)

)
−→ (νa)

(
(P |t̄) | t

)
−→

(νa)
(
P |0

)
. The process type for the intermediary form P |t̄ would be (a :

σa, t : ()0,1/1,0)1,1, where σa is a’s type seen before. Finally, after t has been
consumed, we get (a : σa, t : ()0,0/0,0)1,1, expressing the fact that t has been fully
used. If, for completeness, we wanted to mention t in the type for P before the
first transition, it would have been t : ()0,0/1,1, expressing the fact that it may
not be used in any way by the process, and the environment may use both ports
exactly once. The first transition ((0, 0/1, 1) −→ (0, 1/1, 0) on p’s multiplicities)
can now be seen as E passing t’s output capability to P .

3.5 Types as Triples

In this section we propose a change in channel type notation, to make it more
natural and more extensible.

Although there is no serious problem in having channel types of that form in
a process type, the issue is that, as the examples showed, multiplicities are not
preserved by transitions, while the intuition would suggest that for a channel
there should exist a single channel type which remains valid over time.

For instance, in a|b a−−→ b, a’s type (a being assumed linear) evolves as

()1,0/0,1 −→ ()0,0/0,0, and in a|ā τ−−→ 0, a’s type evolves as ()1,1/0,0 −→ ()0,0/0,0.
Another issue, perhaps more serious, is that multiplicities are not preserved

by composition. For instance, in P = a|b|ā, the first component has ()1,0/0,1 as
a type for a, the second has ()0,0/1,1, the last has ()0,1/1,0, and in P , a has type
()1,1/0,0. So, in a single process, a single channel has four different types (plus
()0,0/0,0 which is a’s type after the reduction on a).

Lastly, the notation introduced here, unlike the one used until now, is easily
adaptable to the concept of “parameter protocols” which will be explained later.

All these considerations suggest separating channel types and channel mul-
tiplicities, while still keeping the same amount of information.

For a process type we use the notation (Σ; ΞL J ΞE), where Σ maps names to
channel types, ΞL contains the local channel usage information and ΞE contains

3.6. BEHAVIOURAL STATEMENTS 21

the remote channel usage information. Similarly, for channel types we use the
notation (σ̃; ξI; ξO) where σ̃ is a set of channel types for the parameters and ξI,
respectively ξO, gives the parameter multiplicities found in the channel input,
respectively output. Note that it is now no longer necessary to distinguish
between channel and parameter types.

A channel type (σ̃)mli,mlo/mri,mro for a channel a is separated into (σ̃),
amli,mlo and amri,mro , and each parameter type σi ∈ σ̃ is similarly split into
its own parameter sequence, input and output behaviour. imi,mo means that
parameter number i is used mi times in input position and mo times in output
position.

For instance, all names being assumed linear, a〈b〉.b̄ has as a process type
Γ =

(
a : σa, b : (); a0,1, b1,1 J a1,0, b0,0

)
: both a and b are locally output once,

b is locally input once (as a consequence of being sent to a) and a is remotely
input once, with σa = ((); 11,0; 10,1) (the first parameter is parameter-less, and
a’s input performs one input on it while a’s output performs one output on it).

In the notation used before this section, the same process type would have
been written as (a : (()1,0/0,1)0,1/1,0, b : ()1,1/0,0), omitting the 1, 1 process type
exponent. For more clarity we will typically write am, ām

′
instead of am,m

′
. In

channel types, terms with zero exponent (such as 10) are usually omitted and
so are exponents equal to one (writing for instance ā instead of ā1).

In process types, local terms with exponent zero and remote terms with ex-
ponent ? are omitted, so that, for instance, the channel a need not be mentioned
in a type for process 0, as it has local multiplicity zero (in both ports) and re-
mote multiplicity ? for both ports, expressing the fact that the environment has,
by default, no constraints on the way it may use the channel.

In that simpler notation, the same process type Γ may be written(
a : σa, b : (); ā, b, b̄ J a, ā0, b0, b̄0

)
(the process does an output on a, an input on b and an output on b, while
the environment an input on a, no output on a and no interaction on b), with
σa = ((); 1; 1̄) (the channel carries a parameter-less channel, its input does an
input on the parameter and its output does an output on the parameter).

It should be clear that this new notation, although more extensible and more
sound, is precisely as expressive as the previous one, in that any type can be
translated from the old to the new notation and vice versa. Also note that the
representation of a process type as the channel type of an imaginary process-
environment communication channel still holds — we use different symbols to
emphasise the fact that process types use channel names while channel types
use parameter numbers.

3.6 Behavioural Statements

The grammar for behavioural statements ∆ is given in (1.2) in the introduction,
page 6. Intuitively, selection ∆1∨∆2 is correct if one of the ∆i does. Conjunction
∆1∧∆2 if both ∆i do. > always holds and ⊥ never does. The formal semantics
rely on several operators and relations on types and will be given later, and
further refined as we enrich the algebra (Definitions 3.12.1, 4.3.4 and 5.2.6).

Much like structural congruence on processes we define an equivalence rela-
tion ∼= on behavioural statements.

22 CHAPTER 3. SIMPLE TYPES

Definition 3.6.1 (Weakening Relation) Relation � is the smallest preorder
defined by the following rules, where ∼= is its symmetric closure. When η1 � η2

we say η1 is weaker than η2, and η2 stronger than η1. If η1
∼= η2, we say η1 are

∼=-equivalent or just equivalent.

1. On dependencies, behavioural statements or process types (ranged over by
η):

• η1 ∧ η2 � η1 � η1 ∨ η2, and ⊥�η�>.

• η∧ (η1∨η2) ∼= (η∧η1)∨ (η∧η2) and η∨ (η1∧η2) ∼= (η∨η1)∧ (η∨η2)

• ∧ and ∨ are commutative, associative and idempotent, up to ∼=.

• If η1 � η2 then η ∧ η1 � η ∧ η2 and η ∨ η1 � η ∨ η2.

• The ∼= relation is a congruence, and � is covariant with respect to ∨
and ∧.

2. On multiplicities, m1 � m2 and pm1 � pm2 if m1 = 0 or m2 ∈ {m1, ?}.
Also, p? ∼= >.

Some more properties of equivalence and weakening can be derived from the
above rules:

Lemma 3.6.2 (Properties of ∼=)

• Up to ∼=, ⊥ is neutral for ∨ and absorbent for ∧. > is absorbent for ∨
and neutral for ∧.

• Let C[·] and C ′[·] be two behavioural contexts and ε a behavioural state-
ment. Then

C[C ′[C[ε]]] ∼= C[C ′[ε]]

• Let ∆ = ∆1 ∧ ∆2, and ∆′ � ∆. Then ∆′ ∼= ∆′1 ∧ ∆′2 with ∆′i � ∆i for
both i. The same property holds for ∨ instead of ∧ or � instead of �.

The proofs are given in Section A.1.1.
The intuitive meaning of equivalence and weakening is that weaker types

are correct for more processes, and equivalent types are correct for precisely
the same processes. This will be stated formally and proved after we introduce
precise definitions of correctness.

As exhaustively describing processes can become rather verbose, we use the
following simplifying convention:

Convention 3.6.3 (Notation for Behavioural Statements)

1. In channel types, and in the local component of process types, any port
whose multiplicity is not specified is assumed to have multiplicity 0.

2. In addition, the local component ΞL of a process type with channel type
mapping Σ should be understood as follows:

ΞL ∧
∧

x 6∈dom(Σ)

(
x0 ∧ x̄0

)

3.7. TYPED TRANSITIONS 23

The goal of statements like p? (“p is used no more than an infinite number of
times), logically equivalent to >, is actually just to prevent the above convention
from applying.

Many operators commute with the logical connectives, so, to keep their
technical definitions short we introduce:

Definition 3.6.4 (Logical Homomorphisms) A logical homomorphism is a
function f on behavioural statements or process types is such that f(X ∨ Y) =
f(X)∨f(Y) and f(X ∧Y) = f(X)∧f(Y), where, having Γi = (Σi; ΞLi J ΞEi),

Γ1 ∨ Γ2
def
= (Σ1 ∧ Σ2; ΞL1 ∨ ΞL2 J ΞE1 ∧ ΞE2)

Γ1 ∧ Γ2
def
= (Σ1 ∧ Σ2; ΞL1 ∧ ΞL2 J ΞE1 ∨ ΞE2) .

The ∧ operator on mappings Σi from names to channel types is equal to their
union, provided that the channel types coincide on names they share.

A logical homomorphism is fully specified by its action on behavioural state-
ments not using ∧ or ∨, as the general behaviour can be derived from the above.

Whether two types are related by weakening, ∼=-equivalent or neither is
decidable using a normal form for dependency statements but I will defer the
proof until Lemma 4.2.13, after introducing behavioural statements including
dependencies

The process (1.1) can be given the following type, where the local behavioural
statement states that r has multiplicity ω, i.e. has precisely one occurrence which
must be replicated. The environment component specifies that a and b must
both have at most one replicated instance.

ΓA = (a : Bool, b : Bool, r : Bool; rω J aω ∧ bω) (3.2)

3.7 Typed Transitions

We describe in this section a transition operator on types, to answer the follow-

ing question: If a process P has type Γ, and P
µ−−→ P ′, what is the type of P ′?

The transition operator applies the transition label µ to Γ and returns Γ o µ as
a type for P ′. The motivation is three-fold:

Ruling out transitions that a well-behaved third party process can’t cause
and that force a process to misbehave. Examples of such illegal transitions
are interference with a communication on a linear channel (l being linear, the

l|l̄ l−−→ l̄ transition is ruled out, as it contradicts l̄0 in the environment), or ones
causing collisions of names of incompatible types. For instance the transition

a(x).x〈3〉 | b(y, z).Q
a(b)
−−−−→ b〈3〉 | b(y, z).Q (3.3)

introduces an arity mismatch, and is ruled out, as a’s parameter’s type is in-
compatible with that of b.

Secondly, when using resources and dependencies (Chapters 4 and follow-
ing), to avoid semantics with universal quantification on third-party processes
we characterise the / connective with labelled transitions, rather than paral-
lel composition with arbitrary processes (much like barbed congruence is often

24 CHAPTER 3. SIMPLE TYPES

characterised using labelled bisimilarity). However, labelled transitions change
the properties of processes: assume P and E represent a process and its en-

vironment. A request P
a〈b〉
−−−−→ is then received as E

a(b)
−−−−→ E′, and if a was

assumed responsive (Section 4.8) in E then b̄ can be assumed to have in E′

whatever property is declared in a’s channel type. This is implemented again
through the transition operator which simultaneously predicts the evolution of
the process doing the transition, and of its environment.

Thirdly, in order to prove that the previous point is sound, our “subject
reduction” theorem works with arbitrary labelled-transitions (see Proposition
5.6.3 on page 60).

We defer the last two goals for Sections 4 and 5 where we’ll formally study
behavioural statements involving dependency statements with universal and
existential resources.

We start with a definition for transitions without parameters:

Definition 3.7.1 (p-Reduction) Let Γ be a process type and p a port. Then
the Γ o p operation is the logical homomorphism such that:

• pm o p =

 ⊥ if m = 0
p0 if m = 1
pm if m ∈ {ω, ?}

• When no other rule applies, ∆ o p = ∆.

• If Γ = (Σ; Ξ1 J Ξ2) then Γ o p def
= (Σ; Ξ1 o p J Ξ2 o p̄) (if either of those

two operations give ⊥ then we say instead that Γ o p is not well-defined).

On dependency networks, Ξop is similar but not quite the same as subtraction
Ξ \ p1 (Definition 3.9.1). The former simulates a transition, and in particular

pω o p = pω matches ! p
p−−→ ! p. The latter attempts to “cancel” an application

of the � operator, and in particular pω \ p is undefined because the Ξ� p = pω

equation has no solution (remember that ! p 6≡ p | ! p as the right hand side has
type p?).

An application of the transition operator is not well-defined when it corre-
sponds to an action that no well-typed third-party process would be able to
do:

Definition 3.7.2 (Observability) A sum s =
∑
i∈I pi is observable in a pro-

cess type Γ (written Γ↓s) if, for all i ∈ I, Γ o pi is well-defined.

Note how p0 o p produces the neutral element ⊥ of selection (ε ∨ ⊥ ∼= ε)
rather than failing. This is used to prune impossible elements in a selection,
when information about the process state gets revealed by transition labels. For
instance assume the type Γ of a process P has (a ∧ b) ∨ (a0 ∧ c ∧ d) in the local

side. Then, if the process follows the transition P
a−−→, one can safely conclude

that the second term of the disjunction is no longer a correct description of the
process. And indeed,

(
(a ∧ b) ∨ (a0 ∧ c ∧ d)

)
o a = (a ∧ b) o a ∨ (a0 ∧ c ∧ d) o a =

(a0 ∧ b) ∨ (⊥ ∧ c ∧ d) = b ∨ ⊥ = b. This “selection-pruning” becomes very
interesting in presence of sums in processes because it precisely mirrors Q’s
disappearance in the (Sum) rule of the labelled transition system (Table 2.2).

3.8. BEHAVIOURAL STATEMENT COMPOSITION 25

As the definition is symmetric, all these properties apply unchanged for the
environment side of a process type.

As an illustration we show on (3.2) how querying a replicated server has no
effect on its availability:

(Σ; rω J r̄? ∧ aω ∧ bω) o r = (Σ; rω o r J (r̄? ∧ aω ∧ bω) o r̄)
= (Σ; rω J r̄? ∧ aω ∧ bω)

based on rω o r = rω and r̄? o r̄ = r̄?, from the definition.
The full definition of Γ o µ (Definition 3.11.2) requires a few more technical

elements, that we cover now.

3.8 Behavioural Statement Composition

As a counterpart to process parallel composition, we introduce the process type
composition operator, that answers the following question: If Γ1 and Γ2 are the
types of two processes P1 and P2, what is the type of P1|P2? This operator,
written �, is of course used by the type system when analysing processes using
the parallel composition constructor, but also by the transition operator. The

reason is most obvious in presence of replicated inputs: P = ! a(x).Q
a(b)
−−−−→

P |(Q{b/x}) is mirrored (P ’s type being Γ) as Γ o a(b) = Γ � σ[b], where σ[b]
injects b into a’s channel type σ to obtain a type for Q.

A port p having multiplicities m1 and m2 in respectively P1 and P2 has
multiplicity m1 +m2 in P1 |P2:

Definition 3.8.1 (Multiplicity Addition) Multiplicity addition m+m′, has
0 as a neutral element, and returns ? for any pair of non-zero multiplicities.

We first define composition on behavioural statements, before lifting it to
full process types.

Definition 3.8.2 (Behavioural Statement Composition) Composition of
behavioural statement is done by the logical homomorphism � such that:

1. (pm)� (pm
′
)

def
= pm+m′

2. Ξ�⊥ def
= ⊥

3. When no other rule applies, ∆�∆′
def
= >.

Logical homomorphisms were only defined for single parameter functions but
can be generalised to many valued functions using “currification”, i.e. seeing �
as a function mapping behavioural statements to functions mapping behavioural
statements to behavioural statements and reading ∆1�∆2 as

(
�(∆1)

)
(∆2). For

instance (∆1∧∆2)�(∆3∨∆4) =
(
(∆1�∆3)∧(∆2�∆3)

)
∨((∆1�∆4)∧(∆2�∆4)

)
.

3.9 Process Type Composition

When composing process types, the local component “grows” and the environ-
ment component “shrinks”. Just like the former is described using behavioural
statement composition, the latter is described using behavioural statement sub-
traction.

26 CHAPTER 3. SIMPLE TYPES

Definition 3.9.1 (Behavioural Statement Subtraction) The subtraction
operator “\” for behavioural statements is defined as follows:

1. (pm) \ (pm
′
)

def
= pm−m

′

2. (Ξ1∧Ξ2)\Ξ def
= (Ξ1\Ξ)∧(Ξ2\Ξ) and Ξ\(Ξ1∧Ξ2)

def
= (Ξ\Ξ1)∧(Ξ\Ξ2).

3. for a set of Ξi and Ξ′j not using the ∨ connective:∨
i∈I

Ξi \
∨
j∈J

Ξ′j
def
=

∨
ρ:J→I

∧
j∈J

(Ξρ(j) \ Ξ′j)

4. when no other rules apply, Ξ \ Ξ′ = Ξ.

Note that unlike composition, subtraction is not commutative or associative,
and it is not a logical homomorphism either. In the last point, ρ ranges over all
functions with domain J — they do not need to be surjective or injective. We
sometimes write Ξ

Ξ′ instead of Ξ \ Ξ′, with the same meaning.
Subtraction and composition of behavioural statements are connected by the

following property:

Lemma 3.9.2 (Subtraction Properties) For any three statements ∆1, ∆2

and ∆3:
∆1 \ (∆2 �∆2) ∼= (∆1 \∆2) \∆3

The proof is given in Section A.1.3, as part of the proof of Lemma 3.9.4 below.
We will now describe composition of full process types. This operation builds

upon two intuitions:

1. The local component of the whole is the composition of the local compo-
nents of the parts.

2. The environment of the whole is the environment of one part, without the
local component of the other part.

Formally:

Definition 3.9.3 (Process Type Composition) The process type composi-
tion operator � is defined as follows:

Let Γi = (Σi; ΞLi J ΞEi) with i = 1, 2. Then

Γ1 � Γ2
def
=

(
Σ1 ∧ Σ2 ; ΞL1 � ΞL2 J

ΞE1

ΞL2
∧ ΞE2

ΞL1

)
For instance, for the composition (x|y) | (ȳ|z̄), all channels being linear:(
x : (), y : () ; x1 ∧ y1 J x0 ∧ x̄1 ∧ y0 ∧ ȳ1

)
�(

y : (), z : () ; ȳ1 ∧ z̄1 J y1 ∧ ȳ0 ∧ z1 ∧ z̄0
)

=(
Σ ; x1 ∧ y1 ∧ ȳ1 ∧ z̄1 J x0 ∧ x̄1 ∧ y0 ∧ ȳ0 ∧ z1 ∧ z̄0

)
,

where Σ = {x : (), y : (), z : ()}. The local component was obtained by adding
zero-terms (Convention 4.2.2):

(x1 ∧ y1 ∧ ȳ0 ∧ z̄0)� (x0 ∧ y0 ∧ ȳ1 ∧ z̄0) = x1+0 ∧ y1+0 ∧ ȳ0+1 ∧ z̄0+1,

3.10. CHANNEL INSTANTIATION 27

and the environment component is

x0 ∧ x̄1 ∧ y0 ∧ ȳ1

ȳ1 ∧ z̄1
∧ y

1 ∧ ȳ0 ∧ z1 ∧ z̄0

x1 ∧ y1
=

(x0 ∧ x̄1 ∧ y0 ∧ ȳ1−1) ∧ (y1−1 ∧ ȳ0 ∧ z1 ∧ z̄0).

Lemma 3.9.4 (Composition Properties) The � operator is commutative
and associative and has element (∅;> J >) as a neutral element.

The proof for the general case (types including dependency statements) is given
in Section A.1.3. Lemma A.1.5 on page 126 gives more properties of the �
operator.

I conjecture that, for all semantic definitions used in this thesis, Γ1 and Γ2

being correct types for respectively P1 and P2 that Γ1 � Γ2, if well defined, is
a correct type for P1 |P2. While this seems easy enough to prove for process
types without dependency statements (Definition 3.12.1), the proofs becomes
difficult for types involving existential resources (Chapter 5). Soundness of the
type systems, however, implies that property whenever both Γi are accepted by
the type system for Pi.

3.10 Channel Instantiation

The channel instantiation operator is used to model the behaviour of an input
or output process in reaction to a request, given the type of the channel. It
not only sets the channel types of the parameters but also the expected remote
behaviour. It acts essentially by substituting parameter references (1, . . . , n) by
the actual parameters (x1, . . . , xn). Extra care is however needed in case two
xi are equal, though, by separating all parameters, doing the substitution and
then composing the resulting process types with the � composition operator.

Slicing a channel type into parameters is done with a restriction operator
that is defined much like restriction of a function, and uses the same notation:

Definition 3.10.1 (Channel Type Restriction) The restriction of a chan-
nel type behavioural statement not using selection “∨”, written ξ|i where i is a
parameter number, is a process type inductively defined as follows:

pm|i =

{
pm if n(p) = i
> otherwise

⊥|i = ⊥, >|i = > and (ξ1 ∧ ξ2)|i = ξ1|i ∧ ξ2|i.
On channel types not using selection, (σ̃; ξI; ξO) |i

def
= (i : σi; ξI|i J ξO|i).

Operators ∧ and ∨ are defined for channel types like for process types (Defi-

nition 3.6.4), and (σ1 ∨σ2)|i
def
= σ1|i ∨σ2|i and (σ1 ∧σ2)|i

def
= σ1|i ∧σ2|i gives

the general case.

Definition 3.10.2 (Process Type Complement) Let Γ = (Σ; ΞL J ΞE) be
a process type. Its complement Γ is then (Σ; ΞE J ΞL).

Definition 3.10.3 (Channel Instantiation) Let σ be an n-ary channel type
and σ′ its completion. Let x̃ be a sequence of n names.

Input-instantiating σ with x̃ (written σ[x̃]) yields the process type

σ
∣∣
1
{x̃/1...n} � · · · � σ

∣∣
n
{x̃/1...n}

28 CHAPTER 3. SIMPLE TYPES

Output-instantiating σ with x̃ (written σ̄[x̃]) is such that σ̄[x̃] = σ[x̃].

Substitutions apply on entire process types as expected.
Example: Let σ =

(
()(); 1̄1 ∧ 21; 11 ∧ 2̄1

)
. Then σ[x, y] =

(
Σ; x̄1 J x1

)
�(

Σ; y1 J ȳ1
)

=
(
Σ; x̄1 ∧ y1 J x1 ∧ ȳ1

)
(Σ = {x : (), y : ()}). In that exam-

ple (and indeed every time all parameters are distinct), σ[x, y] is essentially
equal to σ{x̃/1...n}. Performing a �-composition is necessary if two xi may
be equal: Keeping the same σ, σ[x, x] =

(
x : (); x̄1 J x1

)
�
(
x : ();x1 J x̄1

)
=(

x : ();x1 ∧ x̄1;x0 ∧ x̄0
)
. In this case, the input does both the input and the

output at x, and the output does not interact at it, as told by the x0 ∧ x̄0

part. For example, a(xy).(x̄ | y) | (νb) a〈bb〉.0 τ−−→ b̄ | b, where b’s linearity is
respected.

3.11 Transition Operator

To simulate an output transition, one needs to apply the � operator but with
ΞL and ΞE’s roles exchanged.

Definition 3.11.1 (Output Composition) The output composition opera-
tor ⊗ on process types is the binary operator such that Γ1 ⊗ Γ2 = Γ1 � Γ2.

Based on process composition and channel type instantiation, we may now
generalise Definition 3.7.1:

Definition 3.11.2 (Transition Operator) Γ = (Σ; ΞL J ΞE) being a process
type with Σ(a) = σ, the effect of a transition µ on Γ is Γ o µ, defined as follows.

• Γ o τ def
= Γ,

• Γ o a(x̃)
def
= Γ o a� σ[x̃],

• Γ o (νz̃ : σ̃) a〈x̃〉 def
= Γ o ā ⊗ σ̄[x̃].

We conclude this section with the following definitions, that connect tran-
sitions on types and transitions on processes, as promised at the beginning of
Section 3.7.

Definition 3.11.3 (Typed Process) A typed process is a pair (Γ;P) where
Γ is a process type and P a process.

Note that the above definition imposes no connection whatsoever between
the process and the type. When such connection is required I will say it explic-
itly, for instance Γ may have to be semantically correct for P or accepted by
the type system.

Definition 3.11.4 (Transition on Typed Processes) (Γ;P)
µ−−→ (Γ′;P ′)

if P
µ−−→ P ′ and Γ o µ is well-defined and equal to Γ′.

The following Lemma formally states that process types may be considered
up to ∼= (see also Lemma 3.12.2). We included all operators and relations, even
those defined later in this thesis, to avoid fragmenting the lemma.

3.12. SIMPLE SEMANTICS 29

Lemma 3.11.5 (Types may be seen up to ∼=) Let ∆1, ∆2 be behavioural
statements such that ∆1

∼= ∆2.
Let Φ[·] be some expression involving behavioural statements, using only the

�, ⊗, \, o, close () operators and with one “hole” [·]. Then Φ[∆1] ∼= Φ[∆2].
Now let Φ[·] be some statement involving behavioural statements and the

above operators, as well as any of the relations ∼=, �, ↘ and ↪→. Then Φ[∆1]
is true iff Φ[∆2] is.

3.12 Simple Semantics

We have so far given lots of notation and operators, it is now time for semantic
definitions, to formally tell what is a correct type for a process, showing that
the algebra makes sense.

The following definition refers to types as described so far as “simple types”,
as opposed to ones containing dependency statements like α/ ε, introduced in
the next section.

Definition 3.12.1 (Simple Semantics) Multiplicities and channel types in
a typed process (Γ;P) are correct (written Γ |=# P) if, for any sequence

(Γ;P)
µ̃−−→ (Γ′;P ′) with Γ′ = (Σ; ΞL J ΞE), the following properties are sat-

isfied:

1. dom(Σ) ⊇ fn(P ′).

2. If P ′
µ−−→ P ′′ then there is Γ+ and µ′ such that (Γ+;P ′)

µ′−−−→ (Γ+\µ′;P ′′)
for some P ′′, where µ′ is obtained from µ by replacing bound objects by
fresh names (all distinct in case of inputs), and Γ+ = (Σ; ΞL J ΞE � p̃?)
for some p̃.

3. Let P ′
µ−−→ P ′′ with p = sub(µ). If pω ∈ ΞL then the derivation for P

µ−−→
P ′ must have used (Rep) at some point (i.e. the prefix being consumed in

P must be replicated) and ∃! Q s.t. P ′
µ−−→ Q (up to =α).

Point 1 says each free name has a declared type. Point 2 ensures that any
transition existing in the process has a corresponding transition in the typed
process (which is only possible if the local multiplicities are large enough and
if parameter types match). Input objects are replaced by fresh ones to replace
transitions like (3.3) by valid ones and some remote multiplicities are replaced
by ? to be able to inspect the components of a τ -transitions — for instance we
can show that (Γ;P) is correct when Γ =

(
l : λ; l1 ∧ l̄1 J l0 ∧ l̄0

)
and P = l|l̄

by setting Γ+ =
(
l : λ; l1 ∧ l̄1 J l? ∧ l̄?

)
and checking both P

l−−→ and P
l̄−−→.

By contrast, (
(
l : λ; l1 ∧ l̄0 J l0 ∧ l̄0

)
;P) is not correct because then Γ+ o l̄ = ⊥

and thus P
l̄−−→ has no corresponding transition from (Γ+;P). Note that, for

output, this point both proves that (free) output parameters will have types
matching the channel type, and that the subject and object’s multiplicities are
large enough.

Point 3 enforces uniform availability [San99] of ω names, and prevents a to
be marked uniform in ! a(x).A | ! a(x).B, because there would be two possible
processes resulting from the transition µ = a(b) rather than one, as required.

30 CHAPTER 3. SIMPLE TYPES

From now on we will assume (and, whenever needed, prove!) that multiplic-
ities and channel types in all typed processes being considered are correct.

Lemma 3.12.2 (Simple Correctness and Structural Equivalence)
Let Γ |=# P . If Γ � Γ′ and P ≡ P ′ then Γ′ |=# P ′ as well.

See Section A.1.4 for the proof.

Chapter 4

Universal Properties

In this section we introduce behavioural properties (ranged over by k), resources
pk (ranged over by α, β, γ and dependency statements “γ/ ε” into behavioural
statements. Intuitively, ∆/∆′ holds in a process P if whenever ∆′ holds in E,
∆ holds in P |E.

What is the difference between “∆1 J ∆2” and “∆1 / ∆2”? The former
says two things: the process behaves like ∆1, and the environment is required
to satisfy ∆2. The second statement says that if the environment satisfies ∆2

then the process will satisfy ∆1. For instance assume some process P satisfies
one of those two statements (∆1 J ∆2 or ∆1/∆2). Then composing P with a
process Q gives a process P |Q satisfying ∆1 if Q satisfies ∆2. If Q does not
satisfy ∆2 then composing P and Q gives a process about which nothing can be
said, when the white triangle is used, and fails when the black triangle is used
or more specifically the composition of their types with � is undefined.

4.1 Existential and Universal Resources

A resource is an elementary property (such as activeness, isolation, etc) of a
channel, a port, or of the process globally.

We represent a resource with the notation pk where k is a letter representing
the property, for instance pF for functionality or pA for activeness.

Resources can be classified into two groups depending how they answer the
following question:

Definition 4.1.1 (Universal and Existential Properties) If a resource pk
is provided by P but not by Q, is pk available in P |Q? If the answer is yes, k
is called an existential property, and if the answer is no, α is called a universal
property. The set of universal properties is written U and the set of existential
properties is written E.

The names come from analogy with the corresponding quantifiers: A uni-
versal (resp., existential) resource α is available in a process

∏
i∈I Pi if ∀i ∈ I

(respectively, ∃i ∈ I), α is available in Pi.
An example of universal resource is isolation of a channel (every listener must

satisfy the isolation requirement), while an example of an existential resource

31

32 CHAPTER 4. UNIVERSAL PROPERTIES

is activeness (e.g. if P eventually sends a message on s̄ then this property still
holds when third-party processes are added).

As we will see when we move to semantics, existential properties have live-
ness semantics, i.e. they guarantee something (“good”) is eventually going to
happen, while universal properties have safety semantics, i.e. they guarantee
that something (“bad”) is never going to happen.

The multiplicity statements pm don’t fall neatly in either category, for in-
stance if P provides pm and Q provides pn then P |Q provides pm+n. So multi-
plicities will typically need special treatment. Dropping the linear multiplicity
and only keeping two multiplicities “zero” and “at most finite” (see the discus-
sion on Termination in Section 8.4), in which case they correspond to universal
resources.

We now have, in addition to channel type mappings a : σ, three elementary
forms of behavioural statements that can be made about a process: multiplicity
statements pm, universal statements pk with k ∈ U and existential statements
pk with k ∈ E . We will devote the rest of this section in studying process
types containing only multiplicity statements (first giving a number of tools for
modifying and combining such statements, then providing a precise semantic
definition and finally proposing a type system constructing process types from
processes.

In this chapter we will focus on universal properties and provide generic
semantics and a type system, and reserve treatment of existential properties to
Chapter 5 where we will generalise the setting to include existential properties
as well.

4.2 Universal Type Algebra

We now extend operators seen in the previous section, and introduce a few new
ones. The next sections will further extend these operators (in particular to also
work on types containing existential resources), so, rather than proving and re-
proving their properties at every iteration we only prove the most general cases.
Most of the time, the specific theorems are merely special cases of the general
ones, that appear later in the thesis and are proved in appendices.

The type equivalence relation ∼= is extended with the following rules on
behavioural statements:

Definition 4.2.1 (/ -Contravariance)

(γ/ ε1) ∧ (γ/ ε2) ∼= γ/ (ε1 ∨ ε2) (4.1)

(γ/ ε1) ∨ (γ/ ε2) ∼= γ/ (ε1 ∧ ε2) (4.2)

γ/⊥ ∼= > (4.3)

As with Convention 3.6.3 of page 22 we use a number of notational conven-
tions to keep types concise and readable.

Convention 4.2.2 (Notation for Behavioural Statements) In the rest of
this thesis, the following notational conventions apply:

1. Priority of operations: / binds tighter than ∨ and ∧, so the expression
α ∧ β/ γ ∧ δ must be read as α ∧ (β/ γ) ∧ δ. We will always use brackets
in case of ambiguity with respect to ∨ or ∧.

4.2. UNIVERSAL TYPE ALGEBRA 33

2. The dependency connective / is right-distributive and dependencies can’t
be nested:

• (∆1 ∨∆2)/∆
def
= (∆1/∆) ∨ (∆2/∆),

• (∆1 ∧∆2)/∆
def
= (∆1/∆) ∧ (∆2/∆),

• (∆/∆1)/∆2
def
= ∆/ (∆1 ∧∆2),

• ∆1/ (∆2/∆3)
def
= ∆1/∆2 if ∆3 6∼= ⊥,

• >/∆
def
= >, and ⊥/∆

def
= ⊥ if ∆ 6∼= ⊥.

• Multiplicities pm may not have dependencies, so pm/ ε
def
= pm.

3. pk1k2
abbreviates (pk1

∧ pk2
), and pmk means pm ∧ pk.

4. A dependency “/>” can be omitted.

5. In channel types, and in the local component of process types, any port
whose multiplicity and/or universal properties are not specified is assumed
to have (respectively) multiplicity 0 and/or enjoy all universal properties
being considered, without dependencies.

6. In addition, the local component ΞL of a process type with channel type
mapping Σ should be understood as follows:

ΞL ∧
∧

x6∈dom(Σ)
k∈U

(
x0 ∧ x̄0 ∧ xk ∧ x̄k

)

Cases with a condition of the form ∆ 6∼= ⊥ are complemented by rule (4.3).
The behavioural statement composition operator � is extended with the

following rule:

(pk/ ε)� (pk/ ε
′)

def
= (pk/ ε) ∨ (pk/ ε

′) if k ∈ U (4.4)

which can also (Definition 4.2.1) be read (pk/ε)�(pk/ε
′) ∼= pk/(ε∧ε′), capturing

the essence of universal properties: Let P = P1 |P1 | . . . |Pn, and let, for all i,
Pi’s type (its local component, that is) be Ξi ∈ {γ, γ / ⊥} for some universal
resource γ. Then, applying (4.4), P ’s type is γ if, for all i, Ξi = γ. (If γ were
an existential resource, P ’s type would be γ if there is i with Ξi = γ, as we see
in the next section on existential resources.)

Type composition may create dependency chains which must then be re-
duced. For example forwarders

a� b
def
= ! a(x).b〈x〉 (4.5)

and
b� c

def
= ! b(x).c〈x〉

satisfy respectively aR/bR (when sending a message to a, you will get a response
if b is responsive) and bR/cR (R is responsiveness, a universal property formally
defined in Section 4.8). When composing these two processes as a � b | b � c,
aR/ bR is still valid, but a’s responsiveness depends on (bR ∧ cR), i.e. aR/ (bR∧

34 CHAPTER 4. UNIVERSAL PROPERTIES

cR), because a message sent to a gets resent to b and then (b being free) might
either be caught by the (b � c)-forwarder (in which case we need cR), or it
might be caught by another b-input in the environment, which is why we also
need bR in order to be guaranteed a reply in all cases.

More generally:

Definition 4.2.3 (Dependency Reduction) The reduction relation ↪→ on
behavioural statements is a partial order relation satisfying

1. (pk/ ε) ∧ (γ/ ε′) ↪→ (pk/ ε) ∧ (γ/ ε′{ε{⊥/γ}∧pk/pk}) for k ∈ U .

On process types:

2. Ξ ↪→ Ξ′ implies (Ξ J ΞE) ↪→ (Ξ′ J ΞE) and (ΞL J Ξ) ↪→ (ΞL J Ξ′).

3. (γk/ ε1 J γk/ ε2) ↪→ (γk/ (ε1 ∧ ε2) J γk/ ε2) for k ∈ U .

4. If (α/ ε) � ΞE with β � ε then (γ/ ε′ J ΞE) ↪→(
γ/ (ε′{α∧β/α}) J ΞE

)
for β 6= γ.

5. If (ΞL J ΞE) ↪→ (Ξ′L J Ξ′E) then (C[ΞL] J ΞE) ↪→ (C[Ξ′L] J Ξ′E) and
(ΞL J C[ΞE]) ↪→ (Ξ′L J C[Ξ′E]) for any local context1 C[·].

A behavioural statement Ξ is closed if Ξ ↪→ Ξ′ implies Ξ ∼= Ξ′. A closure of
a behavioural statement Ξ, written close (Ξ), is Ξ′ such that Ξ ↪→ Ξ′ and Ξ′ is
closed.

Point 2 and 5 permit applying reduction on any part of a process type.
Points 3 and 4 permit collapse between the local and environment side of a

process type, and is used by the output transition operator Γ o a〈x̃〉 to remove
expected remote behaviour from the type. See Section 6.2 for details and an
example.

The following Lemma justifies the use of “close” as a function:

Lemma 4.2.4 (Closure Uniqueness) Every behavioural statement has, up
to ∼= (Definition 3.6.1), exactly one closure.

The proof of the general case (for types including existential properties as
well) is given in Appendix A.1.5 on page 129.

Finally, the following definition permits dropping parts of a process types
that are no longer used, after a composition:

Definition 4.2.5 (Removing Non-Observable Dependencies) Let Γ be a
process type. Removing non-observable dependencies in it is done by the clean
operator, applying the following operations on its local behavioural statement ΞL

as many times as possible:

• Replace any statement pk/ ε where p is not observable (Definition 3.7.2)
in Γ by >

• In any statement γ / ε, for any p not observable in Γ’s complement Γ,
replace any pk (k ∈ U) in ε by >.

1I.e. C ::= [·]
∣∣ C ∧∆

∣∣ C ∨∆

4.2. UNIVERSAL TYPE ALGEBRA 35

Process Type composition must now perform dependency reduction, as de-
scribed in the following updated definition, that

1. first follows Definition 3.9.3,

2. then reduces dependency chains (Definition 4.2.3),

3. finally removes non-observable dependencies (Definition 4.2.5).

Definition 4.2.6 (Process Type Composition) Process type composition
applied on two process types Γi = (Σi; ΞLi J ΞEi) with i = 1, 2 (writing Γ1�Γ2),
is equal to:

clean

(
close

(
Σ1 ∧ Σ2 ; ΞL1 � ΞL2 J

ΞE1

ΞL2
∧ ΞE2

ΞL1

))
Note that it is important to first perform dependency reduction and then only
remove non-observable non-observable dependencies. For instance when typing
a(x).P | a〈b〉 where a is linear, the ā-output might require its communication
partner to provide some property, i.e. γ/ ak for some γ and k ∈ U . Now if ak
depends on ε in a(x).P , the resulting statement becomes γ/(ak∧ε) after closure,
and γ/ (>∧ ε) ∼= γ/ε after “cleaning”. If the two operations were swapped we’d
get γ/>, which is incorrect.

Channel instantiation σ[x̃] as used by the transition operator and the type
system also needs some adaptation when used with types including dependency
statements. The type system treats inputs and outputs by including a model of
the remote side, rather than checking the local dependencies are within what’s
permitted by the protocol. This design reduces protocol violations to circular
dependencies. However, we need to make sure that any two parameter resources
are related in some way by the protocol:

Consider the process a〈x, y〉 where a has type

(σ, σ ; 1R ∧ 2̄R ; 1̄R ∧ 2R) . (4.6)

for some σ. From the type we may conclude that both xR and ȳR are im-
mediately available (if the input side is active and responsive) and that the
process can be considered equivalent to a〈. . .〉 |x(z).z̄ | y(νt).t, and therefore
composing it with y � x should not create a deadlock. Following the same
reasoning, in a(x, y).P , P can model the output side as x(νz).z | y(t).t̄ and
therefore setting P = x � y should not create a deadlock. Yet of course
a〈x, y〉 | y � x | a(x, y).x � y is deadlocked. This situation arises because each
side assumes the remote one will behave according to the channel type.

A simple solution is to complete channel types.

Definition 4.2.7 (Complete Channel Types) Minimal dependencies of a
remote resource γ in a behavioural statement ξ (written mdγ(ξ)) are given by
the logical homomorphism mdγ such that:

mdγ(α/ ε) =

{
α if γ � ε
> otherwise

Completeness of a behavioural statement ξ with respect to a behavioural state-
ment ξ′ is defined as follows:

36 CHAPTER 4. UNIVERSAL PROPERTIES

• γ/ ε is complete with respect to ξ′ if mdγ(ξO) � ε.

• ξ1 ∧ ξ2 is complete with respect to ξ′ if both ξi are

• ξ1 ∨ ξ2 is complete with respect to ξ′ if at least one ξi is.

• > is complete with respect to any ξ′.

Definition 4.2.8 (Channel Type Completion) The completion ξ′ of a be-
havioural statement ξ is obtained by replacing any statement α / ε in ξ by
α/ (ε ∧mdα(ξ′)).

Finally, a channel type σ = (σ̃; ξI; ξO) is complete if ξI is complete with
respect to ξO and ξO is complete with respect to ξI. Let ξ′I be the completion
of ξI for ξO, and ξ′O the completion of ξO for ξI. Then completing σ gives
(σ̃; ξ′I; ξ

′
O).

Lemma 4.2.9 (Completion Soundness) The completion of a channel type
is complete.

For example, completing (4.6) gives

(σ, σ ; (1R ∧ 2̄R)/ (2R ∧ 1̄R) ; (1̄R ∧ 2R)/ (2̄R ∧ 1R))

which effectively prevents any dependency whatsoever, and would rule out both
a〈x, y〉.y � x and a(x, y).x� y.

If a’s type is instead set to

σ′ = (σ, σ ; 1R ∧ 2̄R/ 1̄R ; 1̄R ∧ 2R/ 1R) (4.7)

(an instance of a “left-to-right protocol” where parameter resources depend on
resources on parameters on their left), the completion is

(σ, σ ; 1R/ 1̄R ∧ 2̄R/ (1̄R ∧ 2R) ; 1̄R/ 1R ∧ 2R/ (1R ∧ 2̄R)) (4.8)

for which a〈x, y〉.y � x is responsive (but a(x, y).x� y isn’t).
Restriction (Definition 3.10.1) of dependency statements is done as follows:

γ / ε|i =

{
γ/ ε if n(γ) = i
> otherwise

Even though there is one factor for each pa-

rameter, one factor may refer to resources defined in other factors, in case of
conditional parameter resources.

The parameter instantiation operator is otherwise unchanged, following Def-
inition 3.10.3, except that if it results in self-dependent statements γ/ ε where
γ appears in ε then ε must additionally substitute any γ in ε by ⊥.

For instance: having σ′ as in (4.7), σ′[x, y] is

(x : σ ; xR/ x̄R J x̄R/ xR)�
(y : σ ; ȳR/ (x̄R ∧ yR) J yR/ (xR ∧ ȳR)) =

(x : σ, y : σ ; xR/ x̄R ∧ ȳR/ (x̄R ∧ yR) J x̄R/ xR ∧ yR/ (xR ∧ ȳR)) (4.9)

which is (4.8) but with x and y substituting 1 and 2. As we saw after Definition
3.10.3 for multiplicities, it may once more seem a lot of unnecessary trouble
to slice the channel type, substitute and compose it back, if the result is just
a substitution of parameter numbers with parameter names. But consider a

4.2. UNIVERSAL TYPE ALGEBRA 37

channel type whose input side contains 1R/ε∧2R/ε
′. Then (output) parameter

instantiation setting both 1 and 2 to the same name x will transform that
expression to xR/ε�xR/ε′ = xR/(ε∧ε′) (contrast with xR/ε∧xR/ε′ ∼= xR/(ε∨ε′)
which is what you’d get with substitution).

We now generalise the transition operator (Definition 3.11.2) to types in-

cluding behavioural statements. The basic idea is that, having P
a(x̃)
−−−−→ P ′,

P | a〈x̃〉 τ−−→ P ′ so, as types should be preserved by reduction, P ′ should have
the same type as P | a〈x̃〉. Specifically2:

Definition 4.2.10 (Transition Operator with Universal Properties)

Γ = (Σ; ΞL J ΞE) being a process type with Σ(a) = σ and a’s multiplicities in Γ
being m and m′, the effect of a transition µ on Γ is Γ o µ, defined as follows.

• Γ o τ def
= Γ,

• Γ o a(x̃)
def
= Γ o a� σ[x̃]� propK(a〈x̃〉, σ,m,m′),

• Γ o (νz̃ : σ̃) a〈x̃〉 def
= Γ o ā ⊗ σ̄[x̃]� propK(a(x̃), σ,m,m′).

Refer to Section 8.1 for an example of this operator with isolation (K = {I}).
Note that it reduces to Definition 3.11.2 when K = ∅. For some properties
(such as responsiveness, see Section 4.8) the extra propK-term is actually un-
necessary as it only provides properties of the subject, which are irrelevant after
it is consumed. In those cases, dropping it would preserve correctness and yield
a stronger type. The most common case is actually that propK produces terms
that must be preserved after the transitions, and some terms that could be
dropped. We will discuss this further when working on process level proper-
ties (Section 7.7). A stronger transition operator could therefore be obtained
by splitting the propK-function in a “subject-related” (that aren’t needed by
the transition operator) and a “global” term (that must be included by the
transition operator), but I won’t do so for simplicity.

Deciding if two types are equivalent or related by weakening can be done
by constructing their normal forms. We use the

∨
i∈I ∆i notation to mean

∆1 ∨∆2 ∨ . . . , and similar for ∧.
∨
i∈∅ ∆i

def
= ⊥ and

∧
i∈∅ ∆i

def
= >.

Definition 4.2.11 (Normal Form) A behavioural statement or dependency η
is in normal form if it satisfies the following properties:

1. η′ =
∨
i∈I ηi and ηi =

∧
j∈Ij ηij where ηij are either resources (for the

normal form of a dependency) or dependency statements (for the normal
form of a behavioural statement) whose dependencies are themselves in
normal form

2. The sets I and Ij are minimal.

Although statements can have more than one normal form, they are all ∼=-
equivalent to each other, as ∼= is an equivalence relation.

2We should technically write something like “Γ oK µ” as the definition relies on K, but do
not do so to keep notation readable.

38 CHAPTER 4. UNIVERSAL PROPERTIES

Lemma 4.2.12 (Normal Form) Any behavioural statement or dependency is
∼=-equivalent to at least one behavioural statement or dependency in normal
form.

Proof In the context of constructing a normal form, two statements match if
they can be merged in some way, when connected by ∨ or ∧. Specifically:
Every statement matches itself as for instance ε ∨ ε ∼= ε by idempotence, two
statements γ/ ε1 and γ/ ε2 match as f.i. (γ/ ε1) ∨ (γ/ ε2) ∼= γ/ (ε1 ∧ ε2).

Two conjunctions
∧
i∈I ∆i and

∧
i′∈I′ ∆i′ match if either every ∆i with i ∈ I

is ∼=-equivalent to some ∆i′ for some i′ ∈ I ′, or if there are ı̂ ∈ I and ı̂′ ∈ I ′
such that ∆ı̂ matches ∆ı̂′ , every ∆i with i 6= ı̂ is ∼=-equivalent to some ∆i′ , and
reciprocally every ∆i′ with i′ 6= ı̂′ is ∼=-equivalent to some ∆i.

In the former case,
∧
i∈I ∆i ∨

∧
i′∈I′ ∆i′

∼=
∧
i′∈I′ ∆i′ (as a consequence of

(∆1
∼= ∆2) ⇒

(
(∆1 ∨∆2) ∼= ∆1

)
). In the latter case,

∧
i∈I ∆i ∨

∧
i′∈I′ ∆i′

∼=∧
i∈I\{ı̂}∆i ∧ (∆ı̂ ∨∆ı̂′) (as a consequence of the (∆ ∧∆1) ∨ (∆ ∧∆2) ∼= ∆ ∧

(∆1 ∨∆2) rule).
Note that matching is symmetric and reflexive but not transitive. For in-

stance α/εα∧β/εβ∧γ/εγ matches both α/εα∧β/ε̂β∧γ/εγ and α/εα∧β/εβ∧γ/ε̂γ
but the latter two don’t match each other.

The normal form of a behavioural statement is constructed so that in any
conjunction or disjunction appearing in it, no two terms match each other,
thereby being in some sense “minimal”. We show by structural induction that
any behavioural statement ∆ has such a normal form.

For ∆ = ⊥ and ∆ = > the normal forms are respectively
∨
i∈∅ εi and∧

i∈∅ εi.
Let ∆ and ∆′ be two behavioural statements with normal forms

∨
i∈I ∆i

and
∨
i′∈I′ ∆i′ . The normal form of ∆ ∨ ∆′ is obtained from

∨
i∈I∪I′ ∆i by

merging pairs of matching ∆i as indicated above until it is no longer possi-
ble. Although the ∆i were themselves irreducible, merging them may introduce
matching subterms, which can inductively be reduced.

Let ∆i, i′ be the normal form of ∆i ∧ ∆i′ . The normal form of ∆ ∧ ∆′ is
then obtained from

∨
i∈I, i′∈I′(∆i, i′) by merging pairs of matching ∆i, i′ until

no longer possible. Again, the merging may permit further simplification. 2

The following two rules can be used to directly verify if two types are related
by weakening, given their normal forms:

Lemma 4.2.13 (Weakening Criteria) Let {εi}i∈I and {εj}j∈J be sets of de-
pendencies. Then:

1.
∨
i∈I εi �

∨
j∈J εj if for all j ∈ J , there is i ∈ I such that εi � εj.

2.
∧
i∈I εi �

∧
j∈J εj if for all i ∈ I, there is j ∈ J such that εi � εj.

The proof is given in Section A.1.6.
Note that this Lemma is not complete, as statements may have many normal

forms that are not directly comparable with it. For instance
(
α/ εα ∧ β/ εβ ∧

γ/ εγ
)
∨
(
α/ εα ∧ β/ ε̂β ∧ γ/ εγ

)
∨
(
α/ εα ∧ β/ εβ ∧ γ/ ε̂γ

)
has two normal forms(

α/ εα ∧ β/ (εβ ∧ ε̂β)∧ γ/ εγ
)
∨
(
α/ εα ∧ β/ εβ ∧ γ/ ε̂γ

)
and

(
α/ εα ∧ β/ εβ ∧ γ/

(εγ ∧ ε̂γ)
)
∨
(
α/εα∧β/ ε̂β ∧γ/εγ

)
, necessarily ∼=-equivalent, yet not comparable

using Lemma 4.2.13.

4.3. UNIVERSAL SEMANTICS 39

4.3 Universal Semantics

In this section I outline semantic definitions for universal properties using the
notation Γ |=U P , read “The universal properties in process type Γ form a
correct description of process P”.

Universal properties have what is commonly called safety semantics in the
literature (Not all safety properties can be expressed as universal properties,
however — linearity is a counter-example). For instance consider the universal
property N such that pN means “p never appears in subject position”. It is
universal in the sense that, in order to be available in P |Q, it must hold in
both P and Q. It is a safety property in the sense that it can be disproved

by a sequence P
µ̃−−→ P ′ if p appears in subject position in process P ′. That

property is further explored in Section 8.3.
More generally, semantics of a universal property k is provided by a semantic

predicate:

Definition 4.3.1 (Semantic Predicate) A semantic predicate goodk is de-
fined for pairs (p/ ε, (Γ;P)) and satisfies these conditions:

• If ε � ε′ then goodk(p/ ε, (Γ;P))⇒ goodk(p/ ε′, (Γ;P)).

• If P ≡ P ′ then goodk(p/ ε, (Γ;P)) ⇐⇒ goodk(p/ ε, (Γ;P ′)).

• goodk(p/ ε, (Γ;P)) ⇐⇒ goodk(p{x̃/̃y}/ ε{x̃/̃y}, (Γ{x̃/̃y};P{x̃/̃y})) for any
injective substitution {x̃/̃y}.

If the predicate value is preserved by strong bisimulation (P ∼ P ′ implies
goodk(p/ ε, (Γ;P)) ⇐⇒ goodk(p/ ε, (Γ;P ′))), it is said a behavioural property,
and even a weak behavioural property if it is preserved by weak bisimulation ≈.

The value of a semantic predicate should not be related to the correctness
of the typed process (Γ;P), but it may use information from it (typically, p’s
multiplicities) to decide if pk / ε is an error. That dependency statement does
not even necessarily appear in Γ.

A semantic predicate characterises some universal property if it satisfies the
following:

Definition 4.3.2 (Universal Predicate, Error State) A predicate goodk is
universal if, whenever Γ�Γ′ is well-defined, goodk(p/>, (Γ�Γ′;P |P ′)) implies
goodk(p/>, (Γ;P)).

A typed process (pk / ε;P) with k ∈ U is said in error state if goodk(p/
ε, (Γ;P)) is false.

We will see the existential counterpart in the next section.
Any behavioural statement Ξ2 can be written as a conjunction of disjunc-

tions, and then any of those disjunctions (Ξ0 in the definition below) is called a
projection of Ξ2. Formally:

Definition 4.3.3 (Elementary Statements, Projections)
An elementary statement is a behavioural statement of the form∨

i

(
γi/

∧
j

αij
)
.

40 CHAPTER 4. UNIVERSAL PROPERTIES

Let Ξ2 be a behavioural statement. An elementary statement Ξ0 is a projec-
tion of Ξ2, written Ξ2 ↘ Ξ0, iff. Ξ2 � Ξ0 and, for all elementary statements Ξ1

such that Ξ2 � Ξ1 � Ξ0, we have Ξ0
∼= Ξ1.

Given safety predicates for all universal properties, correctness of a typed
process is given by the following:

Definition 4.3.4 (Universal Semantics) Let (Γ;P) be a typed process. It is
said correct with respect to universal semantics (written Γ |=U P) if, for all

transition sequences (Γ;P)
µ̃−−→↘ (Γ′;P ′), the local component of Γ′ having a

normal form
∨
i∈I piki / εi, for all i ∈ I with ki ∈ U , goodki(pi / εi, (Γ

′;P ′))
holds.

We will see examples of goodk in Section 8.

4.4 Universal Type System

In this section we will discuss my decidable and sound but of course not complete
type system for a set of properties K ⊆ U .

Just like the semantic correctness is parametrised by a safety predicate
goodk, the type system is parametrised by an operator propk giving the local
properties satisfied by a guard:

Definition 4.4.1 (Elementary Guard Rule) Let k be a property. The cor-
responding elementary guard rule, denoted propk, is a function mapping tuples
(G, σ,m,m′), where G is a guard, σ is a (its subject’s) channel type, and m,
m′ are multiplicities (total input and output multiplicities of G’s subject), to
behavioural statements Ξ and is such that, for all G, σ, m and m′:

• The returned Ξ-statements must be ⊥ or of the form
∧
i∈I γi/ εi, with all

γi being k-resources.

• qk / ε � propk(σ,G,m,m′) ⇒ goodk(q / ε, (
(
p : σ; J pm ∧ p̄m′

)
;G))

(taking p = sub(G)).

• propk(σ,G{x̃/̃y},m,m′) ∼= propk(σ,G,m,m′){x̃/̃y}

We don’t allow elementary rules to produce disjunctions because it makes some
proofs simpler, but they wouldn’t create any particular difficulties.

propk(σ,G,m,m′) may use p’s multiplicities as well as its object resources’
dependencies (even if objects are bound) to compute pk’s multiplicities.

Definition 4.4.2 (Local Properties) A property k is local if its elementary
rule propk(σ,G,m,m′) always yields either ⊥ or statements of the form

∧
i∈I γi.

Similarly, an operator sumk giving the local properties satisfied by a sum
(the sum itself, not the individual guards — for instance the Activeness instance
introduces sum activeness and the Determinism instance introduces process-level
non-determinism).

4.4. UNIVERSAL TYPE SYSTEM 41

−
(∅;> J >) `K 0

(U-Nil)

∀i : Γi `K Pi
Γ1 � Γ2 `K P1 |P2

(U-Par)
Γ `K P Γ(x) = σ

(νx) Γ `K (νx : σ)P
(U-Res)

∀i : (Σi; ΞLi J ΞEi) `K Gi.Pi
ΞE �

∧
i ΞEi(∧

i Σi;
∧
k∈K sumk({pi}i,ΞE) ∧

∨
i ΞLi J ΞE

)
`K

∑
iGi.Pi

(U-Sum)

Γ `K P sub(G) = p obj(G) = x̃(
p : σ; J pm ∧ p̄m′

)
�(

; p#(G) J
)
�

!if #(G) = ω (νbn(G))
(

Γ �(
;
∧
k∈K pk/ propk(σ,G,m,m′) J

)
�

σ[x̃]
)

`K G.P

(U-Pre)

Table 4.1: Universal Type System Rules

Definition 4.4.3 (Elementary Sum Rule) Let k be a property. The corre-
sponding elementary sum rule sumk is a function mapping pairs (p̃,Ξ), where p̃
is an unordered sequence of ports (the sum guards) and Ξ a behavioural state-
ment (the process type’s environment component) to behavioural statements Ξ
and is such that, for all p̃, Ξ:

• qk / ε � sumk({pi}i,ΞE) ⇒ goodk(q / ε, ((Σ; J ΞE) ;
∑
iGi.Pi)) if ∀i :

sub(Gi) = pi

• sumk(p̃{x̃/̃y},Ξ{x̃/̃y}) ∼= sumk(p̃,Ξ{x̃/̃y}){x̃/̃y}

Given a process P , a mapping Σ of channel types for all free names, and
optionally multiplicities for some names, the type system constructs a process
type Γ for P . Processes deemed unsafe (that may violate multiplicity constraints
or mismatch channel types) are rejected as untypable. Incompleteness means
that typing may fail for process that are actually safe, and even when typing
succeeds, the behavioural statement constructed by the type system may be
weaker than what is actually satisfied by the type system.

Definition 4.4.4 (Universal Type System) Typability of a typed process
(Γ;P) with respect to a set of universal properties K, written Γ `K P , is in-
ductively given by the rules in Table 4.1.

We now briefly describe each rule, the reader is referred to Section 6.4 for a
complete typing example.

• Just like 0 is a neutral element of the | process constructor (up to ≡, that
is) (U-Nil) returns the neutral element of the � operator.

• (U-Par) directly applies the � operator (Definition 4.2.6).

42 CHAPTER 4. UNIVERSAL PROPERTIES

• (U-Res) applies a restriction operator (see Definition 4.4.5 below).

• The type of a sum is essentially the types of all its terms connected by
disjunction (see Definition 3.6.4), as the process evolves like one of its
components. In rule (U-Sum) we also apply the elementary sum rules
in the local component, and permits some weakening through the remote
component. As we’ll see in the Activeness instance (Section 6) this may
permit the elementary sum operator to produce stronger statements.

• The (U-Pre) produces a set of statements that are all valid for the process:
first, pick some arbitrary channel type and multiplicities for G’s subject
p, then increase p’s multiplicities by 1 or (if G is replicated) ω. Then next
three factors refer to the objects and are bound with the binding operator
νbn(G) after composition. These three terms are respectively the contin-
uation, the local properties as constructed by the elementary rules, and
remote behaviour. The remote behaviour σ[x̃] plays two roles, respectively
through the local and environment components of the instantiated chan-
nel σ[tf]. First, it states that the G’s communication partner will behave
according to the protocol specified in the channel type whenever queries
are sent to it. Second, its environment multiplicities set upper bounds on
how many times the local side is permitted to use the parameters’ ports.
The ! operator is described in Definition 4.4.7 below.

The (U-New) and (U-Pre) rules use binding of process types. Binding a
name amounts to forcing it not to be used in the environment, i.e. its environ-
ment multiplicities are forced to zero and dependencies on its universal resources
become > (vacuously true).

Formally:

Definition 4.4.5 (Binding) On dependencies, (ν̄x)ε is the logical homomor-
phism such that:

(ν̄x)pk
def
=

{
> if n(p) = x
pk if n(p) 6= x

On behavioural statements, (νx) Ξ is the logical homomorphism such that:

(νx) (pk/ ε) =

{
> if n(p) = x

pk/ (ν̄x)ε if n(p) 6= x

On multiplicities:

(νx) (pm) =

{
> if n(p) = x

(pm) if n(p) 6= x

Binding a name x in a process type Γ is then as follows:

(νx) (Σ; ΞL J ΞE)
def
=
(
Σ|dom(Σ)\x; (νx) ΞL J (νx) ΞE

)
When typing a replicated process ! a(ỹ).P or ! (νz̃) a〈x̃〉.P , #(G) is ω and

parts of the type related to parameters or to the continuation must be replicated.

Lemma 4.4.6 (Existence of Replication) Let Γ be a process type. Then
there is a natural number n such that either Γn is not well defined or Γn ∼= Γn+1

(where Γ1 def
= Γ and Γn+1 def

= Γn � Γ).

4.5. VERIFYING PROTOCOLS 43

We omit the proof but it can be shown in two parts: If Γ doesn’t use disjunc-
tion then n = 2 satisfies the requirements (although n = 1 may also work for
some processes) and Γ2 replaces all non-zero multiplicities by ?. Secondly, if Γ’s
normal form contains m ∨-separated terms then n = 2m satisfies the require-
ments, as this gives a chance for a dependency chain traversing all m terms to
be reduced (and the factor 2 sets multiplicities to ? as before). This is shown
by induction on m.

This lemma implies that repeatedly composing a process type with itself
eventually stabilises, which gives a practical way to compute “Γ∞”.

Definition 4.4.7 (Process Type Replication) Replication of a process type

Γ is defined with the following rule: ! Γ
def
= Γn where n is a value satisfying the

lemma above.

In the type system, “!if somethingΓ” stands for ! Γ if “something” is true,
otherwise it is equal to just Γ.

For instance when typing ! a〈b〉.c we obtain the multiplicities āω� ! (b̄1�c1) =
āω ∧ b̄? ∧ c?, assuming a has the usual input-output-alternating type.

4.5 Verifying Protocols

The framework and type system given so far assume guards will respect the
protocols described in channel types. Let channel a have type σ = ((); 1̄?k; 1̄k)
requiring its parameter to satisfy some property k. Then the above system
is only sound whenever all a-inputs and outputs provide k on their parame-
ter. Consider a process x.Q where xk depends on some ε. Then, when typing
a(x).x.Q, the prefix rule computes (νx) (xk/ε) = > (plus some other statements
related to a itself), so ε is lost.

One way to deal with this issue is to include responsiveness into K (Sec-
tion 4.8, that keeps track of dependencies required by processes to satisfy the
protocol, but requires some changes in the type algebra. We will explore this
direction in detail in the next section.

Another, simpler but sufficient for universal resources, way is to have a single
global “correctness resource” procok whose elementary rule is given by:

propok(σ,G,m,m′) = procok/

{
σ[obj(G)] if G is an input

σ[obj(G)] if G is an output
(4.10)

and include ok into K. Then a typed process (Γ;P) satisfies all protocols on
its channels if Γ `K P implies procok � Γ. The semantic predicate goodok is
defined to be always true.

4.6 Properties

This section summarises the properties enjoyed by the type system.
The following lemma follows from the type system rules being syntax di-

rected:

Lemma 4.6.1 (Decidability) Typability with with respect to a set of universal
properties is decidable.

44 CHAPTER 4. UNIVERSAL PROPERTIES

Structurally congruent processes can be typed the same way (which is one
reason processes can safely be identified up to structural congruence):

Proposition 4.6.2 (Subject Congruence) Let Γ `K P ≡ P ′. Then Γ′ `K
P ′ for some Γ′ ∼= Γ.

As far as typability is concerned, the transition operator correctly predicts
the evolution of a process. If µ = τ then Γ o µ = Γ and this proposition shows
that the type of a process remains valid when the process is reduced.

Proposition 4.6.3 (Subject Reduction) Let (Γ;P) be a typed process such

that Γ `K P with ok ∈ K and procok � Γ. Then, for any transition (Γ;P)
µ−−→

(Γ o µ;P ′), ∃Γ′ s.t. Γ′ � Γ o µ and Γ′ `K P ′.

The proof (for the general type system including existential resources and events
— see the next section) is given in Appendix A.2.

Conjecture 4.6.4 (Type Soundness) If Γ `K P with ok ∈ K and procok �
Γ, then Γ |=U P .

Proof Subject Reduction implies that if (Γ;P)
µ̃−−→ (Γ′;P ′) then Γ′ � Γ′′ for

some Γ′′ with Γ′′ `K P ′. The semantic predicates must be preserved by weaken-
ing, by the definition of elementary rules, so it is enough to show that (Γ′′;P ′)
is immediately correct, which implies immediate correctness of (Γ′;P ′), and
therefore correctness (Γ;P).

Due to time constraints I was unable to prove the general case and will
instead show immediately correctness of individual instances (Section 8). 2

4.7 Type System Tuning

Examining the type system, one can notice that two rules are not completely
specified, namely (U-Pre) does not specify how to obtain m and m′. No matter
how these are obtained the type system is sound, and so we left them unspecified
to permit some tuning of the type system behaviour. We suggest a few ways of
choosing them.

Consider the process P = a.b|ā.

• The simplest way is to always set m = m′ = ? in (U-Pre), but since
the environment is given lots of freedom, processes can only be given
few guarantees. For instance in P , none of a, ā or b are active, as any
attempt to access any of them could be broken by a third-party process
(
(
a1 ∧ ā1 ∧ b1 ∧ b0 J a? ∧ ā? ∧ b? ∧ b̄?

)
` P)

• The other extreme is to run the type system twice, first to record the
multiplicities obtained in ΞL, and then using those as values for m and
m′ in the second run. This basically gives the environment as little
permissions as possible, actually so little that in P , none of a, ā or
b are active because the environment is not permitted to access them
(
(
a1 ∧ ā1 ∧ b1 ∧ b̄0 J a0 ∧ ā0 ∧ b0 ∧ b̄0

)
` P)

4.8. RESPONSIVENESS 45

• A more interesting middle-ground is to do the above but replacing any pω∧
p̄m by pω∧ p̄?, and p1∧ p̄0 by p1∧ p̄1. Now in P , both a and b are assumed
linear, and b is found active:

(
a1 ∧ ā1 ∧ b1A ∧ b̄0 J a0 ∧ ā0 ∧ b0 ∧ b̄1

)
` P .

No matter which of the above variant is chosen it may at times be desirable to
override the default behaviour, for instance through annotations in the process.

4.8 Responsiveness

As a preamble to the following section on existential properties we now present
responsiveness, a universal property denoted R of particular importance when
studying existential properties. It permits estimating the dependencies of bound
names without keeping track of them individually, and plays a central role in
detecting circular forwarding.

In a word, a port p is responsive (written pR) in process P if all p-prefixes
obey p’s protocol, in the sense that they provide on their parameters all resources
declared in the channel type, with no additional dependencies.

Suppose the (existential) channel property O stands for “will eventually be
subject of an output”, and let σ be a channel type whose input must provide O
on the parameter:

σ =
(
(); 1̄1 ∧ 1O; 11

)
Then in P = a(x).x̄, a is responsive, as passing any name b to a will trigger

the output b̄, i.e. P provides bO in response to a request a(b). In P ′ = a(x).t.x̄,
where t is linear and a has type σ, a’s responsiveness depends on tO: if t
is eventually used in output then a will eventually provide an output at its
parameter x.

Inversely, let Q be a process doing the transition Q
a(b)
−−−−→ Q′. If a is

responsive in Q, bO will be available in Q′. If a’s responsiveness aR depends on
ε then bO also depends on ε in Q′.

In a forwarder a � b, a can only be responsive if b is, i.e. we have the
dependency3 aR / bR. When chaining forwarders, dependency gets reduced
(Definition 5.1.3), e.g. in a � b | b � c, a’s responsiveness depends on c’s
responsiveness. In case of a circular forwarding as in a � b | b � a, aR/ bR ∧
bR/aR reduces to (aR∧bR)/⊥, i.e. neither a nor b is responsive in that process.

Semantics of responsiveness is provided by the following definition:

Definition 4.8.1 (Responsiveness Semantic Predicate)
The semantic predicate goodR for responsiveness is such that goodR(p/ε, (Γ;P))

if for all transitions (Γ;P)
(νz̃) a〈x̃〉
−−−−−−−−→ s.t. n(p) ∈ x̃ \ z̃: σ[x̃]|pR = pR/ ε0 with

(aR ∧ ε0) � ε (σ being a’s type according to Γ).

Why is it enough to only check responsiveness of output objects?
Responsiveness is usually tested in two phases, one to “ask a question” and

one for the process to “reply to it” (for instance testing a’s responsiveness in

the process a(x).x̄ is done with the “question”
a(x)
−−−−→ followed by the “answer”

x̄−−→). For such tests responsiveness is always “immediately correct” as it takes
more than one transition to test it. However when an output process delegates

3aR also depends on b’s input activeness, as we’ll see in Section 6 later on.

46 CHAPTER 4. UNIVERSAL PROPERTIES

responsiveness of an object port, a single transition can disprove a responsiveness

statement. For instance if a process exhibits the
a〈b〉
−−−−→ transition, assuming one

parameter i/o-alternating channel types, we can immediately infer that bR must
depend at least on aR. This is what the above definition checks.

As we will see in the next section, the question-and-reply semantics of re-
sponsiveness is actually provided by the transition operator (Definition 5.1.6 on
page 50), that (at “question time”) converts a responsiveness statements into
statements specified by the channel type, which, in turn, are verified by the
liveness semantics (Definition 5.2.6 on page 54).

Definition 4.8.2 (Responsiveness Elementary Guard Rule) The depen-
dencies of a responsiveness resource pR are obtained with the elementary rule

propR(σ,G,m,m′) = sub(G)R/

{
σ[obj(G)] if G is an input

σ[obj(G)] if G is an output
(4.11)

i.e. p is responsive if all resources declared in the channel type are provided.

Chapter 5

Existential Properties

This section extends the previous one with existential properties. Remember
(Definition 4.1.1, page 31) that an existential property available in a process is
also available when that process is composed with another process. As we’ll see
later, existential properties have liveness semantics.

Two important extensions must be done to the theory presented in the pre-
vious section. First, to implement that intuitive definition of “existentialism”,
the spatial operators and relations (�, ↪→ and binding, as opposed to logical
relations ∼= and �) use the dual logical connectives when acting on existential
resources compared to universal resources. Secondly, the universal type system
was treating a process a.P precisely the same way as a |P (indeed, if some-

thing bad can happen in P , it is just one
a−−→-transition away from a.P , so

that process isn’t safe either, unless a is not observable but this is out of the
type system’s scope), but such a shortcut isn’t acceptable for a property with
liveness semantics: if something good eventually happens in P , we need to be
sure a can be consumed before we can state the good thing happens in a.P
as well. This manifests itself as an operator for dependencies of a transition
(Definition 5.2.5).

Before proceeding to the type algebra we introduce a few restrictions on
what channel types are acceptable:

Definition 5.0.3 (Restrictions on Channel Types) Let σ = (σ̃; ξI; ξO).
The channel type σ is said to have shared liveness (between its input and

its output) if there is an existential resource pk such that both pmk / ε � ξI and

pm
′

k / ε′ � ξO for some m, m′, ε and ε′.
The type is said to have blocked liveness if there is a port p such that either

pmk / ε � ξI and p̄0 � ξO, or pk/ ε � ξO and p̄0 � ξI, with k ∈ E.
We also say it is a case of blocked liveness if there is a term p0

k in either ξI
or ξO.

A channel type has unstable multiplicities if (at least) one of ξI and ξO
include {p1 ∧ p̄m}, for some p and non-zero m.

Channel types with shared liveness need special care in a type system. Con-
sider for example the channel type

σ = (()(); 1̄?A ∧ 1? ∧ 2A/ 1̄A; 1̄?A ∧ 1? ∧ 2̄A/ 1̄A) .

47

48 CHAPTER 5. EXISTENTIAL PROPERTIES

It has shared liveness on 1̄A, and a valid input with a : σ is a(xy).(! x̄ |x.y).
The process

a(xy).x.y (5.1)

on its own does not respect the protocol because it does not provide activeness
on x̄. Similarly, a valid output for the same type is a〈bc〉.(! b̄ | b.c̄). Note that
both the input and the output on a are required by the protocol to provide
output activeness on the first parameter, which is exactly “shared activeness”.

The reason it needs special care in a type system is that a naive treatment
would result in (5.1) being accepted: indeed, the protocol requires the output to
provide an x-output without conditions, and the input in (5.1) can be considered
to have delegated its work on x to the a-output. Yet of course a similar reasoning
would allow the output to delegate its work to the a-input, resulting in neither
of them doing it. We will see cases where such delegation is acceptable.

Types with blocked liveness simultaneously require one port of the channel
to provide some existential resource on a parameter, and forbid the other port to
connect to that parameter. The reason for ruling out such types is that analysing
processes such as a〈a〉 with a : σ = (σ;>; 1̄?A ∧ 1?) becomes more difficult —
On the one hand the request itself seems to fulfil the protocol, as it is an output
on a, and on the other hand, as soon as the request is sent the output is no
longer available but, simultaneously, the a-input is not be permitted to attempt
accessing its parameter. Ruling out blocked liveness avoids such paradoxical
cases.

Finally, a valid receiver (or sender) on a channel type with unstable mul-
tiplicities may become invalid through a τ -transition, by consuming its own
parameters. For instance, having a : σ = ((); . . .; 1 ∧ 1̄), P = (νb) (a〈b〉 | b | b̄) is
a correct output. But of course P −→ (νb) (a〈b〉), which isn’t.

Because of that, and because we believe there is little (if any) use to such
channel types, we apply, in the rest of this thesis, the following:

Convention 5.0.4 No channel types involved in a semantic judgement (Defini-
tion 5.2.6) or in a typing judgement (Sections 4.4 and 5.3) may have shared or
blocked liveness, or unstable multiplicities (this also applies to parameter types
at all depths).

5.1 Existential Type Algebra

From this point on, behavioural statements can use both existential and uni-
versal properties, even within a single dependency statement (i.e. a universal
resource may depend on an existential one or the other way round). To spare
the reader from moving back and forth between this section and the previous
one we present the full properties in this section, with both rules given in the
previous sections and ones specific to existential properties.

The difference between existential and universal properties is made explicit
in the following definition that extends Definition 3.9.3 and rule (4.4) on pages
26 and 33.

Definition 5.1.1 (Behavioural Statement Composition) composition on
behavioural statements is given by the logical homomorphism � such that:

1. (pm)� (pm
′
)

def
= pm+m′

5.1. EXISTENTIAL TYPE ALGEBRA 49

2. (pk/ ε)� (pk/ ε
′)

def
= (pk/ ε) ∨ (pk/ ε

′) if k ∈ U .

3. (pk/ ε)� (pk/ ε
′)

def
= (pk/ ε) ∧ (pk/ ε

′) if k ∈ E.

4. Ξ�⊥ def
= ⊥

5. When no other rule applies, ∆�∆′
def
= >.

Point 5 above and Convention 4.2.2 interact in a subtle way to give the
following property:

Lemma 5.1.2 (Composition of disjoint statements) For two statements
Ξ and Ξ′, having no resources in common when written according to Convention
4.2.2 (specifically, its point 1), Ξ� Ξ′ = Ξ ∧ Ξ′

The proof is given in Appendix A.1.7 on page 132.

Definition 5.1.3 (Dependency Reduction) The reduction relation ↪→ on
behavioural statements is a partial order relation satisfying

1. (pk/ ε) ∧ (γ/ ε′) ↪→ (pk/ ε) ∧ (γ/ ε′{ε{⊥/γ}∧pk/pk}) for k ∈ U .

2. (pk/ ε) ∧ (γ/ ε′) ↪→ (pk/ ε) ∧ (γ/ ε′{ε{⊥/γ}∨pk/pk}) for k ∈ E

On process types:

3. Ξ ↪→ Ξ′ implies (Ξ J ΞE) ↪→ (Ξ′ J ΞE) and (ΞL J Ξ) ↪→ (ΞL J Ξ′).

4. (γk/ ε1 J γk/ ε2) ↪→ (γk/ (ε1 ∧ ε2) J γk/ ε2) for k ∈ U .

5. If (α/ ε) � ΞE with β � ε then (γ/ ε′ J ΞE) ↪→(
γ/ (ε′{α∧β/α}) J ΞE

)
for β 6= γ.

6. If (ΞL J ΞE) ↪→ (Ξ′L J Ξ′E) then (C[ΞL] J ΞE) ↪→ (C[Ξ′L] J Ξ′E) and
(ΞL J C[ΞE]) ↪→ (Ξ′L J C[Ξ′E]) for any local context1 C[·].

A behavioural statement Ξ is closed if Ξ ↪→ Ξ′ implies Ξ ∼= Ξ′. A closure of
a behavioural statement Ξ, written close (Ξ), is Ξ′ such that Ξ ↪→ Ξ′ and Ξ′ is
closed.

Note again the difference in treatment of existential and universal resources,
that is very similar to the one occurring in behavioural statement composition.
Indeed it is a simple exercise to verify that dependency reduction commutes
with composition or, more accurately:

Lemma 5.1.4 For any two behavioural statements Ξ and Ξ′:

close (close (Ξ)� Ξ′) ∼= close (Ξ� Ξ′) .

1I.e. C ::= [·]
∣∣ C ∧∆

∣∣ C ∨∆

50 CHAPTER 5. EXISTENTIAL PROPERTIES

Note also how self-dependencies γ / γ are not permitted and replaced by
γ/⊥ in both cases. Existential self-dependencies are for example found in dead-
locks such as a.b̄|b.ā where āA and b̄A depend on each other, and responsiveness
self-dependencies are for example found in forwarder loops (sometimes called
livelocks in the literature) such as ! a(x).b〈x〉 | ! b(x).a〈x〉 where aR and bR de-
pend on each other. We’ll see in Section 5.5 some cases of self-dependencies
that aren’t similarly harmful, and how to deal with them nicely.

Definition 4.2.5 (specifically, its second point) is generalised to existential
resources as expected:

Definition 5.1.5 (Removing Non-Observable Dependencies) Let Γ be a
process type. Removing non-observable dependencies in it is done by the clean
operator, applying the following operations on its local behavioural statement ΞL

as many times as possible:

• Replace any statement pk/ ε where p is not observable (Definition 3.7.2)
in Γ by >

• In any statement γ / ε, for any p not observable in Γ’s complement Γ,
replace any pk (k ∈ U) in ε by >, and any pk (k ∈ E) in ε by ⊥.

The transition operator (Definition 4.2.10) is modified to use remote respon-
siveness when computing dependencies of remote resources.

Definition 5.1.6 (Transition Operator) Γ = (Σ; ΞL J ΞE) being a process
type with Σ(a) = σ, the effect of a transition µ on Γ is Γ o µ, defined as follows.

• Γ o τ def
= Γ,

• Γ o a(x̃)
def
= Γ o a� σ[x̃]/ (aR J āR)� propK(a〈x̃〉, σ,m,m′),

• Γ o (νz̃ : σ̃) a〈x̃〉 def
= Γ o ā ⊗ σ̄[x̃]/ (āR J aR)� propK(a(x̃), σ,m,m′).

In the above definition, Γ/ (āR J aR) makes Γ’s local component depend
on āR and its environment component depend on aR.

Point 4 from Definition 5.1.3 now becomes important for removing remote
behaviour from the type. For instance a〈x〉.x.s̄, where a is alternating, may
have reduced s̄A/ x̄A and x̄A/ aR into s̄A/ aR. Simulating the a〈x〉 transition
effectively cancels the x̄A/ aR term and the reduction it caused, as the environ-
ment component of σ[x]/ (āR J aR) contains xA / aR which, through rule 4,
replaces aR-dependencies by x̄A dependencies. Similarly, the x̄A/aR statement
becomes x̄A/ x̄A, i.e. x̄A/⊥.

5.2 Existential Semantics

While universal properties enjoy safety semantics, existential properties enjoy
liveness semantics, but here again not all liveness semantics can be expressed
with existential properties, a counter-example being termination (specifically,
having no infinite sequences of τ -reductions: ! a and ! ā terminate but their
composition ! a | ! ā doesn’t). A statement γ/> |= P , where γ is an existential
resource, guarantees that γ will eventually be provided by P .

Just like safety, semantics of an existential property is parametrised by a
predicate goodk, which must match the following definition:

5.2. EXISTENTIAL SEMANTICS 51

Definition 5.2.1 (Existential Predicate, Success State)
A semantic predicate goodk is existential if, whenever Γ � Γ′ is well-defined,
goodk(p/>, (Γ;P)) implies goodk(p/>, (Γ� Γ′;P |P ′)).

A typed process (pk/ ε;P) is said in a success state if goodk(p/ ε, (Γ;P)) is
true.

A naive definition of liveness would be just replacing “for all transition se-
quences” by “there is a transition sequence”, in Definition 4.3.4. However, in
order for such a property to be useful we need a degree of reliability (which is
implied by the future tense and the word “eventually”), as the scheduler might
not necessarily follow that exact sequence.

The word “eventually” also hides a fairness assumption on the scheduler,
which says, for a scheduler, that if a particular transition is constantly available,
it will eventually occur. Instead of a particular transition we shall use a strategy
function, but let’s not get ahead of ourselves. We now consider a series of
processes Pi with increasing requirements for liveness, and, for each, we discuss
whether a resource γ should be considered to be “eventually provided”. This
will help indicating more accurately what is required of the scheduler.

To keep this discussion general, assume that some process S immediately
provides some existential resource γ (i.e. (γ;S) is in a success state). For instance
S could be a success signal ! s̄ and γ is immediately available in a process if it
has an s̄ barb.

The simplest example is P1 = S. If γ is immediately available, then it is
also eventually available.

Now an unrelated but unending computation should not affect liveness: In
P2 = S|Ω, γ is still available, Ω being some process with Ω −→ Ω, for instance

Ω
def
= (νt) (t̄ | ! t.t̄) (5.2)

A finite number of transitions preserves liveness (but not immediate avail-
ability). Resource γ is eventually provided in P3 = τ.τ . . . τ.S |Ω with a finite
number of τ , and where

τ.P
def
= (νt) (t̄|t.P) (5.3)

for some fresh t.
The following example is more interesting in that the number of transitions

is no longer bounded:

P4 = ! a(x).x̄ | ! a(x).a(νy).y.x̄ | a(νt).t.S

In this process, every request sent to a may be received by the first or by the
second input. The first input immediately responds to requests while the second
one resends the request. So, the request a(νt) will, under a fair scheduler, loop
in the second input for a while, and then eventually be passed to the first input,
after which the requests to the second input cascade back until the t̄ output is
fired and S freed. It seems therefore reasonable to consider γ to be eventually
provided by this process, as it matches the accepted definition of fairness (see
for instance [PT00], Section 2.9, as well as [CC04]), in that the first input is
continuously available, and at each step there is a request to a available, so that
the first input should eventually catch one request, after which we are back to
P3.

52 CHAPTER 5. EXISTENTIAL PROPERTIES

A last example, which, in our opinion, would be requiring too much from a
scheduler (as even a stochastic scheduler would not satisfy it), is the following.
This example shows that a naive liveness definition such as “∀Q s.t. P =⇒ Q,
∃R s.t. Q =⇒ R and (γ;R) is in a success state” would be too weak.

P6 = ! a(x).x̄ | ! a(x).a(νy).y.a〈x〉 | a(νt).t.S (5.4)

In this example (P5 comes later — larger numbers correspond to increasing
requirements on the scheduler), the second output, when receiving the reply
to its own request a〈y〉, re-sends the request it received rather than replying
to it, so that the global behaviour is analogous to a random walk. Although
a stochastic scheduler (randomly and independently choosing one a-input for
each a-output) will eventually reach S, adding more copies of the second input
to the program will have the probability of γ becoming available fall to zero.

The fundamental difference between P4 and P6 is that in the former, at
any point, there is a possibility of progress towards immediate availability of
γ. In other words, at any time, there exists a strong transition that brings the
process “closer” to S. In P4 this progress is very simple, in that having the
first input handle a request passes from a process where the number of required
τ -transitions is not bounded, to one where it is bounded. A process P ′4 where
the progress is slightly more elaborate would be obtained by replacing a(νt)
in that process by a〈t1〉.t1.a〈t2〉.t2 . . . tn−1.a(νtn). In that case, the “distance”
towards an output at s is n, and is reduced by one every time the first a-input
is used. When that distance reaches zero, we are back to case P3, with a finite
number of transitions. The usual fairness assumption now works, because if
at any point in time the scheduler has the possibility to make an (irreversible)
progress towards a success state, and if the number of times such progress is
required is bound (it is 1 for P4 and n for P ′4), then S will eventually be reached.
In P6, no such irreversible progress occurs, because any diminution of the call
stack can be cancelled by calling the second a-input a sufficient number of times.

In order to obtain a precise definition for liveness we introduce a “game”
between two players (The “1”-prefix will become clear later in this section).

Definition 5.2.2 (1-Liveness) An existential property γ is 1-eventually pro-
vided by P if Player 2 has a winning strategy in the following game (where
“current process” is initially P):

Player 1 plays first, and, at each turn, may replace the current process P ′

with any process Q such that P ′ =⇒ Q.
Player 2, at each turn, may either do nothing or replace the current process

P ′ with any process Q such that P ′
τ−−→ Q.

Player 2 has won if the current process P ′ is ever in a success state.

In that definition, Player 2 models the “opportunities” the scheduler has
to make progress, while player 1 models the times when the scheduler doesn’t
“take advantage” of those opportunities.

It is now clear that, in P4, player 2 simply connects any existing a-output
to the first input, and wins, while, in P6, player 1 simply activates the second
input at least once at every turn, preventing S to ever become available.

Although we are getting close, this definition is still not good enough.
For instance it does not consider γ eventually available in the process

P5 = ! a.(νt) (t | t̄.ā) | ! a.S | ā

5.2. EXISTENTIAL SEMANTICS 53

An infinite transition sequence always picking the a-input on the left, and
only letting the strategy do the communication on t, satisfies the requirements
in Definition 5.2.2, without ever bringing S to top-level.

For the same reasons explained above we believe this process should also be
accepted (also compare with the very similar process ! a.ā | ! a.S | ā where γ is
recognised as eventually available by both semantics).

We therefore refine the game by permitting player 2 to play more than one
transition.

Definition 5.2.3 (n-Liveness, Liveness) A resource γ will n-eventually be
provided by a process if it satisfies the definition above but where player 2 is
allowed up to n transitions. γ is eventually available whenever it is n-eventually
available for some n.

With this definition γ is eventually provided by Pi iff i < 6.
Now that we have a good definition of “eventually” we can define correctness

of a full typed process.
A natural semantic definition of a dependency statement δ1/ δ2 for a typed

process (Γ1;P) would be “for all correctly typed processes (Γ2;P2) such that δ2
is included in Γ2 and Γ1 � Γ2 is well defined, (Γ1 � Γ2;P1 |P2) satisfies δ1.”

That definition happens to be very difficult to work with, mainly because of
the universal quantification on P2. Just as it is common to use labelled bisim-
ulations instead of barbed equivalences we use a definition based on labelled
transitions.

Assuming an elementary statement
∨
i

(
γi/

∧
j αij

)
is satisfied by a process,

there must be a “path” in the transition network that uses no more external
resources than declared in the statement, and that “leads to” a set of processes
where one of the γi is immediately available. We call such a path a strategy (in
Definition 5.2.2 it represents a strategy for player 2).

Definition 5.2.4 (Strategy Function) A strategy function f is a function
mapping typed processes to pairs of transition labels and typed processes s.t. if

f(Γ;P) = (µ; Γ′;P ′) then (Γ;P)
µ−−→ (Γ′;P ′).

We also define a relation
f−−→ where f(Γ;P) = (µ; Γ′;P ′) implies (Γ;P)

f−−→
(Γ′;P ′), and (Γ;P)

f−−→ (Γ;P) otherwise (if (Γ;P) is not in f ’s domain).

In other words, whenever a typed process is missing from a strategy’s do-
main, it means that the strategy is to leave the process unchanged rather than
performing a transition. When constructing a strategy function we exclude
typed processes containing statements that are immediately correct from the
function’s domain.

For a strategy f to prove a statement γ/ ε, it should not use more resources
than declared in ε.

The following operator makes precise what resources are needed to perform
a transition (and are property-dependant).

Definition 5.2.5 (Dependencies of a Transition) The dependency opera-
tor of an existential property k is a function depk mapping transition labels
µ to dependencies depk(µ), that commutes with substitution (depk(µ{x̃/̃y}) =
depk(µ){x̃/̃y}) and maps τ to >.

54 CHAPTER 5. EXISTENTIAL PROPERTIES

A typical definition will be depk(τ) = >, and depk(µ) with sub(µ) = p to be
availability of a p̄-prefix. When using many existential properties k1, k2, . . . ,
use depk1

(µ) ∧ depk2
(µ) ∧ Indeed, that operator will only ever be used as∧

k∈K depk(µ) so we shall use the abbreviation depK(µ).
Should an application require depk(τ) to be a dependency not ∼=-equivalent

to > for at least one k ∈ E , the dependency reduction relation (Definition 5.1.3)
must be altered as follows:

(pk/ ε) ∧ (γ/ ε′) ↪→ (pk/ ε) ∧ (γ/ ε′{(depK(τ)∧ε){⊥/γ}∨pk/pk})

The actual liveness semantic definition generalises fairness (Definition 5.2.2)
to labelled transitions and arbitrarily complex behavioural statements.

Definition 5.2.6 (Existential Semantics) Let Γ be a type and P a process.
We say that P satisfies Γ (or Γ is correct for P), written Γ |= P , if there is a
strategy f satisfying the following.

For any infinite sequence of the form (Γ;P) = (Γ0;P0)
µ̃0−−−→↘ (Γ′0;P ′0)

f−−→
(Γ1;P1) · · · µ̃i−−−→↘ (Γ′i;P

′
i)

f−−→ (Γi+1;Pi+1) · · · , such that, ∀i, j: i < j implies
Γ′i � Γ′j and ∀i > 0: µ̃i’s input objects are all fresh and distinct. Let (for all

i) µi be the label of the (Γ′i;P
′
i)

f−−→ (Γi+1;Pi+1) transition (or “τ” if it is the
identity).

Then there is a resource pk and a number n such that:

1. for all i, (pk/ depK(µi)) � Γ′i

2. For some ε with (pk/ ε) � Γn, goodk(p/ ε, (Γn;Pn)).

Although the {Pi} sequence is infinite, it may correspond to a finite number
of (strong) transitions if, after some point, all µ̃i are empty and the strategy
does no transition.

Note that this definition coincides with Definition 5.2.2 if Γ’s local component
contains a single statement γ/ > and depK(µ) = > iff µ = τ . Technically this
should be called “1-correctness” as the strategy is allowed a single transition at
a time, but it so happens that our soundness theorem holds for this definition
of correctness, making it a stronger result than soundness for “n-correctness”.

Remember (rule (4.1) on page 32) that disjunctions on the dependency
side can be passed on the other side of the / connective, where they become
conjunctions, which can then be dropped through projection. For example:
γ/ (α1∨α2) ∼= (γ/α1)∧ (γ/α2)↘ (γ/αi) for any i ∈ {1, 2}. Because of this, the
↘ relation precisely characterises the environment’s freedom in resource negoti-
ation. Assume a process has a local component γ1/(α11∨α12) ∧ γ2/(α21∨α22).
It has four projections, one of which is γ2/ α21, which corresponds to the envi-
ronment requesting γ2, and providing α21 in exchange.

While projections deal with disjunctions on the right of the / connective,
disjunctions on its left need to be handled specially. Note how the statement
(Ξ1 ∨Ξ2) |= P is strictly weaker (in a logical sense) than (Ξ1 |= P)∨ (Ξ2 |= P),
for reasons analogous to the modal logic statement 2(Ξ1 ∨ Ξ2) being weaker
than (2Ξ1)∨ (2Ξ2): it could be that the selection has not yet been made in P ,
and will only occur after a few transitions. Because of that we can’t define the
semantics of a disjunction in terms of the semantics of the individual terms. On

5.3. EXISTENTIAL TYPE SYSTEM 55

the other hand (Ξ1 ∧ Ξ2) |= P is equivalent to (Ξ1 |= P) ∧ (Ξ2 |= P), just like
2(Ξ1 ∧ Ξ2) ⇐⇒ (2Ξ1) ∧ (2ε2) in most modal logics.

This is addressed in Definition 5.2.6 by first picking a full transition sequence
and then only by requiring the outcome of the selection to be decided, which can
be seen in the definition in the expression “there is pk such that. . . ”. Note how
the transition sequence interleaves single invocations of the strategy between
arbitrarily long transition sequences, resulting in what we believe to be a good
characterisation of fairness. The “eventually” aspect of activeness is covered by
the “there is n s.t.”.

Passing non-fresh names to inputs may connect two otherwise unrelated
parts of the process. This is also modelled by dependency reduction between
the σ[x̃] term and the rest of the type performed by the � operator, as described
in Definition 5.1.6.

The weakening constraint “i < j implies Γ′i � Γ′j” is a compact way of
requiring a particular transition sequence not to “change its mind” on what is
being requested. The first sequence µ̃0 is unrestricted and may pick any part
of the process type after any kind of interference, but in subsequent transitions,
new statements introduced by the o operator through the σ[x̃] factor must be
discarded with the ↘ relation in order to satisfy the weakening constraint.

The following formalises the intuition behind weakening:

Lemma 5.2.7 (Bisimulations and Type Equivalence) Let a typed process
(Γ;P) be such that Γ |= P . Then, for any Γ′ � Γ and any P ′ ∼ P , if Γ′ |=# P ′

then Γ′ |= P ′.

See Appendix A.1.8 for the proof.
We need the simple-correctness check because uniformity is not always pre-

served by bisimilarity. On the other hand we have the following corollary which
justifies our identifying types up to ∼= and processes up to ≡. See also Proposi-
tion 5.6.2.

Corollary 5.2.8 Let Γ ∼= Γ′ and P ≡ P ′. Then Γ |=# P if and only if
Γ′ |=# P ′, and Γ |= P if and only if Γ′ |= P ′.

5.3 Existential Type System

In this section we will extend the type system given in Section 4.4 to work with
existential properties, i.e. for any K with {R} ⊆ K ⊆ U ∪ E .

Just like the universal type system, this one is parametrised with guard and
sum elementary rules for each k ∈ K. Assume for now the elementary rules for
existential properties are local (Definition 4.4.2), and refer to Section 6.5 for the
additional requirements for soundness and an example.

Given a process P , a mapping Σ of channel types for all free names, and
optionally multiplicities for some names, the type system constructs a process
type Γ for P . Processes deemed unsafe (that may violate multiplicity constraints
or mismatch channel types) are rejected as untypable. Incompleteness means
that typing may fail for process that are actually safe, and even when typing
succeeds, the behavioural statement constructed by the type system may be
weaker than what is actually satisfied by the type system.

56 CHAPTER 5. EXISTENTIAL PROPERTIES

−
(∅;> J >) `K 0

(E-Nil)

∀i : Γi `K Pi
Γ1 � Γ2 `K P1 |P2

(E-Par)
Γ `K P Γ(x) = σ

(νx) Γ `K (νx : σ)P
(E-Res)

∀i : (Σi; ΞLi J ΞEi) `K Gi.Pi
ΞE �

∧
i ΞEi(∧

i Σi;
∧
k∈K sumk({pi}i,ΞE) ∧

∨
i ΞLi J ΞE

)
`K

∑
iGi.Pi

(E-Sum)

Γ `K P sub(G) = p obj(G) = x̃(
p : σ; J pm ∧ p̄m′

)
�(

; p#(G) J
)
�

!if #(G) = ω (νbn(G))
(

Γ/ depK(G) �
σ[x̃]/ (depK(G) ∧ p̄R) �(

;
∧
k∈K propk(σ,G,m,m′) J

))
`K G.P

(E-Pre)

Table 5.1: Existential Type System Rules

Definition 5.3.1 (Existential Type System) Typability of a typed process
(Γ;P) with respect to a set of universal and existential properties K including
R, written Γ `K P , is inductively given by the rules in Table 5.1.

A detailed typing example including explanations for the rules is given for Ac-
tiveness in Section 6.4.

Definition 4.4.5 is augmented for existential properties, whose activeness
become ⊥ (unsatisfiable).

Definition 5.3.2 (Binding) On dependencies, (ν̄x)ε is the logical homomor-
phism such that:

(ν̄x)pk
def
=

 ⊥ if n(p) = x and k ∈ E
> if n(p) = x and k ∈ U
pk if n(p) 6= x

On behavioural statements, (νx) Ξ is the logical homomorphism such that:

(νx) (pk/ ε) =

{
> if n(p) = x

pk/ (ν̄x)ε if n(p) 6= x

On multiplicities:

(νx) (pm) =

{
> if n(p) = x

(pm) if n(p) 6= x

Binding a name x in a process type Γ is done as follows:

(νx) (Σ; ΞL J ΞE)
def
=
(
Σ|dom(Σ)\x; (νx) ΞL J (νx) ΞE

)

5.4. EVENTS AND NON-TRANSITIVE DEPENDENCIES 57

5.4 Events and Non-Transitive Dependencies

We describe in this section an extension to the typing notation that, although it
isn’t strictly necessary, significantly increases the set of processes correctly anal-
ysed by the type system. Namely, events permit non-transitive dependencies
(α depending on β and β on γ but α not depending on γ).

We use the activeness existential property, formally defined in Section 6, to
motivate this extension. Consider the process a(xy).x̄.ȳ | a〈bc〉 | b.c, where all
names are linear, active and responsive. It exhibits the following dependencies:
By definition of responsiveness, āR/ (bA ∧ cA). Because of prefixing, cA/ b̄A.
As b̄A is provided through parameter instantiation, it depends on a being input
active and responsive: b̄A / aAR. Collapsing these three dependencies would
result in āR/ aR, and a similar reasoning can be applied (just before the (νxy)
binding done by the (E-Pre) rule) to show aR/āR, so we end up with (aA∧āR)/
⊥. The problem is that output responsiveness should be computed assuming the
remote side is active and responsive (available and behaving as specified in the
channel type). So for the above example, when computing āR’s dependencies,
b̄A is assumed to be available. However, if b̄A is considered on its own, it does
depend on both aA and aR. Note that a common approach to this problem is
to consider each parameter (and in turn their parameters, etc) as an individual
resource (see e.g. Kobayashi) rather than grouping all of them into a single
“responsiveness” resource.

A second example is t̄.(a(x).b.x | b̄), where t is plain and b linear. The b.x
part implies aR/b̄A. Because of prefixing, b̄A/tA. However, input responsiveness
doesn’t require the input to be available, but just that if it gets consumed, a
reply will be sent. In this case, if the input is consumed then t̄ must necessarily
have been consumed as well, so that b doesn’t have dependencies. So aR/ tA is
not required, and we have aR/>.

For an (admittedly a bit far-fetched) example where āR appears at the other
end of the chain, consider

q.
(
! z | a〈b〉 | a(x).p(y).x.y

)
| p〈q〉 | P

where P contains active and responsive a-output and p-input. We have the
chain zA/ q̄A/ pR/ āR/ b̄A, but zA does not depend on b̄A, since by the time
a〈b〉 comes to top-level, zA no longer needs q̄A, and so q̄A’s dependency on ā’s
responsiveness no longer matters. In other words, as long as the q-prefix hasn’t
been consumed, we have only zA/ q̄A/ pR, and after q has been consumed, we
have zA without dependencies and q̄A/ pR/ āR/ b̄A.

We address all these cases through the concept of events. An event is a
property related to the state of a process that either holds or doesn’t. An
example is “the a-server has received a query”. Another example is “this and
that prefixes have communicated” (where some unambiguous way to identify
which prefixes “this” and “that” refer to is assumed).

The notation for process types from (1.2) on page 6 is extended as follows:

∆ ::= · · ·
∣∣ l

∣∣ l̄ (5.5)

We do not provide a way to formally express such an event, but only assume
that, for a particular event and a particular state of a process, it has a well-
defined truth value. Then, l corresponds to > is the event has occurred, and to

58 CHAPTER 5. EXISTENTIAL PROPERTIES

⊥ if it has not. Its negation, l̄, corresponds to ⊥ if the event has occurred, and
to > otherwise. To the definition of weakening we add the following rule:

l ∨ l̄ ∼= >

In the first example above, let l stand for “the communication on a has
taken place”. Then responsiveness is vacuously true as long as l did not occur,
which can be expressed with āR/ (l̄∨ (bA∧ cA)), and dependency on the remote
activeness and responsiveness is only needed as long as l has not taken place:
b̄A/ (l∨aAR) and c̄A/ (bA∧ (l∨aAR)). The rest stays the same: bA and cA/ b̄A.
Substituting bA by > and cA by b̄A in the output responsiveness statement
gives āR/ (l̄∨ b̄A) as before. Substituting b̄A by l∨ aAR yields āR/ (l̄∨ l∨ aAR)
which is equivalent (by l ∨ l̄ ∼= > and > ∨ γ ∼= >) to āR / >, i.e. a is output
responsive in the process.

As far as the second example is concerned, we have aR/(l̄∨b̄A) and b̄A/(l∨tA),
which combine into aR/ (l̄ ∨ l ∨ tA), which reduces to aR/>, as required.

When typing a process, annotate each guarded process G.P with an event
l unique in the whole process (Section 7 explores thus annotated processes in
more detail), as in Gl.P . The annotations can be discarded after the typing is
done.

Dependencies of a guard Gl extract the event tag . . .

depA(Gl)
def
= l ∨ sub(G)A

. . . and so does the elementary responsiveness rule.

propR(σ,Gl,m,m′) = sub(G)R/

{
l̄ ∨ σ[obj(G)] if G is an input

l̄ ∨ σ[obj(G)] if G is an output
(5.6)

Finally, the p̄R-dependency of remote behaviour in (E-Pre) must be simi-
larly altered:

Γ `K P sub(G) = p obj(G) = x̃(
p : σ; J pm ∧ p̄m′

)
�(

; p#(G) J
)
�

!if #(G) = ω (νbn(G))
(

Γ/ depK(G) �
σ[x̃]/ (depK(G) ∧ (l ∨ p̄R)) �(

;
∧
k∈K propk(σ,G,m,m′) J

))
`K G.P

(E-Pre)

5.5 Delayed Dependencies and Self-Name Pass-
ing

Before summarising our results, we propose in this section another extension to
the type notation that basically permits names passing references to themselves
while still being responsive. We will not prove that these changes preserve the
type system properties.

Delayed dependencies permit discarding certain circularities connecting two
different depths of a recursive channel type, such as ! a(x).x〈a〉 which is a server

5.5. DELAYED DEPENDENCIES AND SELF-NAME PASSING 59

responding to queries by a pointer to itself. Another example is (10.1) on page
118 where GeomR/ succR and succR/GeomR reduce to GeomR/> rather than
GeomR / ⊥. This extension can of course be applied simultaneously to the
previous one since they operate on different parts of the theory.

In a statement γ/ε, a resource α in ε is now annotated with a delay αd where d
is any number or −∞ representing the “difference in depth” in the channel type.
Note that, when this extension is in use, the abbreviation (pmA/ε) = pm∧(pA/ε)
should probably be avoided as it would create confusion.

The following examples illustrate nicely the semantics of delays.

• aR/ uA2 ` a(x).x(νy).ū.ȳ — the u-dependency is only required after two
exchanges on a (specifically, a and x)

• ūA/ āAR
−2 ` a(x).x(νy).ū.ȳ — the ū-output is available only after two

exchanges on a has been performed. Note the difference of the sign with
the previous example ; aR starts providing resources before needed uA,
and ūA needs aAR before it provides resources.

• bA/ aA0 ` ā.b — the delay is 0 because aA is needed before one can even
start interacting with b.

• aR/ bAR
0 ` ! a(x).b〈x〉— a (depth 1) answer from a depends on a (depth

1) answer from b.

• aR/ bAR
2 ` ! a(x).x〈b〉 — in order to do n steps of a dialogue with a, we

need to be able to do n− 2 steps of a dialogue with b.

When substituting resources for dependencies in the reduction relation “↪→”,
ε 7→ εd is the logical homomorphism such that

(
αd
)
e = αd+e where + is the

usual numerical addition, extended with ∀d : −∞ + d = −∞. When a substi-
tution would introduce a self-dependency α/ αd, αd is replaced by > if d > 0,
and ⊥ otherwise.

Continuing the last example above, ! a(x).x〈b〉! b(x).x〈c〉 would have type
aR/ bAR

2 � bR/ cAR
2, which reduces to aR/ cAR

2+2 = aR/ cAR
4. If c = a

then we get aR/>.

The channel instantiation operator σ[x̃] adds the −∞ delay to every de-
pendency declared in the channel type, and circular dependencies added for
completion have delay 0.

The transition operator delays responsiveness dependencies by −1:

Γ o a(x̃)
def
= Γ o a� σ[x̃]/

(
aR
−1 J āR

−1
)

and similarly for output, making explicit the fact that we descended one step

into the channel type. For instance in a(x).ū.x̄
a(t)
−−−−→ ū.t̄, the dependency

aR/ uA
1 becomes t̄A/ uA

1−1 = t̄A/ uA
0.

Finally, the prefix rule extended with delays is as follows:

60 CHAPTER 5. EXISTENTIAL PROPERTIES

Γ ` P sub(G) = p obj(G) = x̃(
p : σ; J pm ∧ p̄m′

)
�(

; p#(G) J
)
�

!if #(G) = ω (νbn(G))
(

Γ/ depk(G)0 �
σ[x̃]/ (depk(G) ∧ p̄R)−1 �(

;
∧
k∈K propk(σ,G,m,m′)+1 J

))
`K G.P

(E-Pre)

where Ξ 7→ Ξd is a logical homomorphism such that (α/ ε)d
def
= α/ (εd).

5.6 Properties

This section summarises the properties enjoyed by the type system. It is a
repeat of the corresponding results with just universal properties (Section 4.6).

Lemma 5.6.1 (Decidability) Typability with with respect to a set of universal
and existential properties is decidable.

Proposition 5.6.2 (Subject Congruence) Let Γ `K P ≡ P ′. Then Γ′ `K
P ′ for some Γ′ ∼= Γ.

Proposition 5.6.3 (Subject Reduction) Let (Γ;P) be a typed process such

that Γ `K P . Then, for any transition (Γ;P)
µ−−→ (Γ oµ;P ′), ∃Γ′ s.t. Γ′ � Γ oµ

and Γ′ `K P ′.

The proof is in Appendix A.2.

Proposition 5.6.4 (Type Soundness) If Γ `K P then Γ |= P .

The proof is in Section 7.6.

Chapter 6

Activeness

6.1 Introduction

An common requirement one may wish to express about a component written
in mobile calculus is that a process should be listening (respectively, ready to
send) at an input (resp., output) port. Let’s call this property activeness at a
port1. Let’s first review our needs before proceeding to a formal definition.

For example, consider a process decoding a value v and sending a sig-
nal on a channel s: P = a(v).case v of (x, y) : s̄, and a process first sending
a signal and then decoding v: Q = a(v).s̄.case v of (x, y) : 0. These pro-
cesses could be encoded as [[P]] = a(u).u(νr1r2).r1(x).r2(y).s̄ and [[Q]] =
a(u).s̄.u(νr1r2).r1(x).r2(y).0, where u holds an encoding of v.

As said in the introduction, P ∼ Q but [[P]] 6≈ [[Q]] because they are
distinguished by

R = a(νu).⊥.!u(xy).(x〈b〉|y〈c〉) (6.1)

where
⊥.P def

= (νt) t.P (6.2)

with t 6∈ fn(P). Note that R does not violate any multiplicity constraint, as the
receiver on u is present — it is merely deadlocked (inactive).

Before I propose a solution, it should be noted that requiring u to be active
is not enough, as is shown by

R = a(νu).!u(xy).⊥.(x〈b〉|y〈c〉) (6.3)

where u is active (after the transition a(νu)), but, after u receives a request
r1r2, the reply itself is not. This is solved by requiring responsiveness on u (see
Section 4.8) in addition to activeness.

Moreover, in order to have a property which is meaningful for nonlinear
names, and for consistency with the liveness definition (Definition 5.2.2 on page
52), we add a reliability requirement to activeness.

Consider the process P = p(x).x̄, where p is plain (i.e. has multiplicities
p? ∧ p̄?). At first sight it might seem natural to declare that p is active in
P . However that input is not reliable because, composing P with a process
p〈b〉.s̄ will not necessarily trigger the success signal s̄, if a third party E = p〈c〉.

1Input activeness is commonly called receptiveness.

61

62 CHAPTER 6. ACTIVENESS

“steals” the input at p. In contrast, the replicated form !P = ! p(x).x̄ is reliable,
because there is an infinite supply of inputs at p and no third party can steal
them all (assuming fairness on the scheduler).

Finally, our target being encodings, there will be typically an overhead (in
terms of extra τ -transitions) in an encoded process compared to the original
one. Therefore it is acceptable if a number of τ -transitions are required before
a receiver (or sender, for output-activeness) becomes available. Ruling out such
“weak activeness” would give strong activeness and is characterised by works
such as [San99, ABL03].

This gives us an informal definition for activeness:

Definition 6.1.1 (Activeness — Informal) A port p is said active in a pro-
cess P if

1. P will eventually (i.e. possibly after a finite number of τ -reductions) con-
tain an unguarded occurrence of p in subject position.

2. The port is “reliable”, in the sense that no third party can interfere in a
way that prevents p from being made available to a process attempting to
communicate with that port.

As the reader has no doubt guessed by now, the existential type system and
liveness semantics can be instantiated to obtain precise activeness semantics
and an associated sound type system.

We introduce the existential property A. A resource pA in behavioural
statements, meaning that the port must be used at least once. Note that mul-
tiplicities and activeness are complementary, in that the former put an upper
bound to the number of uses of a channel, and the latter puts a lower bound
on that number.

Assuming σp is the type for b and c in the example at the beginning of this
section, the reply channels r1 and r2 will have a type such as

σr = (σp; 1? ∧ 1̄?; 1? ∧ 1̄?)

The ? exponents and absence of A-resources mean that both the input and
output ports of reply channels are free to interact with the parameters b and c
in any way. A type for u can then be written σu = (σr, σr; 1̄A ∧ 2̄A; 1A ∧ 2A),
telling that u’s input port must provide one active output on both parameters,
and u’s output port must provide one active input on both parameters. Finally,
the channel a will have a type such as (σu; 1̄?; 1ωA ∧ 1̄?), where both input and
output ports of a may send requests on the parameter u but a’s output port
must provide one replicated (“ω”) and active (“A”) input at the parameter.

Note that it makes little sense to specify activeness on the environment
component of a process type, so we will usually have activeness marks on the
local component only.

Some examples:
The type

(
a : (), b : (); aA ∧ b J ā ∧ b̄

)
is a valid description of a | b, of a.b and

a | ⊥.b, but not of ⊥.a | b. It does however correctly describe

τ.a
def
= (νt) (t̄|t.a.0)

as the fact that a is not immediately available is not an issue if it is guaranteed
to eventually become so.

6.1. INTRODUCTION 63

The type
(
a : (); a?A J a0 ∧ ā?

)
is a valid description of ! a.0, but not of a.0,

because the latter is unreliable.
(
a : (); a?A J a0 ∧ ā1

)
, on the other hand, is a

valid description of both processes: As the environment may only do one output
on a, there is no risk of competition even if the input is not replicated.

Finally, using the notation

?.P
def
= (νt) (t̄ | t | t.P) (6.4)

(t fresh) as a shortcut for an “unreliable prefix”,
(
a : ((); 1̄A; 1A); aA J a0 ∧ ā

)
is a valid description of a(x).x̄, but neither describes ?.a(x).x̄ (a is not active)
nor a(x).?.x̄ (x is not active).

Weakening the process type to
(
a : ((); 1̄A; 1A); a J a0 ∧ ā

)
allows describing

the first two processes, but still not the last: It is no longer required for a to
be active, but if a request is received then it must be replied to, because the
parameter is declared active in the channel type.

The input port of a Boolean channel (such as r, a and b in (1.1), page 5)
has type

1̄1
A ∨ 2̄1

A, (6.5)

that says that either the first parameter (“1”) must be output (“1̄”) active
(“A”), and the second parameter unused2, or (“∨”) the opposite.

The Boolean protocol requires outputs to provide a branching on the pa-
rameters, so for instance

b(νtf).(t.P+f.Q) (6.6)

is a responsive client (correctly implementing “if b then P else Q”), while, defin-
ing the internal choice operator ⊕ as

P ⊕Q def
= (νt)

(
t̄ | (t.P+t.Q)

)
(6.7)

for some t 6∈ (fn(P) ∪ fn(Q)),

b(νtf).(t.P ⊕ f.Q) (6.8)

may lead to deadlocks. We want the first process to be recognised as correct
and the second one to be ruled out but of course both obey the client protocol
11
A ∨ 21

A. We need a way to have behavioural statements express the property
“1 and 2 must be guards of a sum”.

To this end we extend the grammar for resources:

α ::= pk
∣∣ sA (6.9)

s ::= p
∣∣ (p+ s) (6.10)

Just like pA, activeness of a port p, requires a p-guarded process to eventu-
ally come to top-level, activeness of a branching (

∑
i pi)A requires a sum to

eventually come to top-level, with one pi-guarded branch for each i.
We can now write the output Boolean protocol:(

11 ∨ 21
)
∧ (1 + 2)A, (6.11)

2Remember Convention 4.2.2 on page 32: ports that aren’t mentioned have multiplicity
zero.

64 CHAPTER 6. ACTIVENESS

which is similar to (6.5) but on the input port of the parameters, and with the
additional constraint (“∧”) that inputs at the parameters (“1” and “2”) must
be the guards of a sum (“+”). This protocol is respected by (6.6) and broken
by (6.8).

Abbreviating the parameter-less channel type (; ;) as (), the Boolean type
gathers (6.5) and (6.11) as

Bool
def
=
(
()() ; 1̄1

A ∨ 2̄1
A ; (11 ∨ 21) ∧ (1 + 2)A

)
(6.12)

Consider the following process:

t.a(x).u.x̄

As far as activeness is concerned, we have tA/ >, aA/ t̄A, uA/ (t̄A ∧ āA),
and, after a has been consumed and x made visible, x̄A/ ūA.

By definition, aR/ x̄A (a is responsive if x̄ is active), which gives us aR/ ūA.
Why doesn’t a’s responsiveness depend on t̄A? The idea is that responsiveness’s
dependencies are those that are required to provide a reply after a request has
been received. In this case, t̄A is no longer needed once a has received a request,
but ūA is required to answer it. Inversely, t̄A is required for a communication
on a to take place, but ūA is not needed for that.

The following process (where a is plain active) is another illustration of the
duality between activeness and responsiveness:

t1.a(x).u1.x̄ | t2.a(x).u2.x̄

Now we have aA/ (t̄1A ∨ t̄2A) and aR/ (ū1A ∧ ū2A): any of the t̄iA must
be provided for a to be active, but both ūiA must be provided for a to be
responsive. The reason is that the sender can’t know for certain which input on
a will receive the request, and therefore must provide both ūi to be certain the
request gets replied.

The following process shows why keeping activeness and responsiveness sep-
arate when computing dependencies is interesting:

a〈t〉.! b(x).x̄ | ! a(y).b〈y〉 (6.13)

We have both bA / aA (because of the left-hand component) and aR / bR
(because of the right-hand component), and yet the process isn’t deadlocked.
However, not distinguishing aA and aR would result in the circularity “a/ b/ a”
and have the process rejected.

We can now add activeness annotation to (3.2) as a type for the process
(1.1). The local behavioural statement states that r is active with multiplicity
ω (i.e. has precisely one occurrence and it is replicated), and its responsiveness
depends on both a and b being active and responsive. The environment com-
ponent specifies that a and b must both have at most one replicated instance.

ΓA =
(
a : Bool, b : Bool, r : Bool;(

rω ∧ (rA/>)
)
∧
(
rR/ (aA ∧ aR ∧ bA ∧ bR)

)
J aω ∧ bω

)
(6.14)

By convention 4.2.2, the previous type can be rewritten:
(a : Bool, b : Bool, r : Bool; rωA ∧ rR/ (aAR ∧ bAR) J aω ∧ bω)

6.2. BRANCHING ALGEBRA 65

6.2 Branching Algebra

As explained earlier, activeness is a property of a set of ports rather than a
single port. This means that, while all laws in Section 5 refer to resources using
the notation “pk”, the p can now also be a branching s = p1 + p2 + · · · pn. The
previously introduced rules are otherwise unchanged. We now introduce rules
dealing specifically with sums.

Removal of non-observable dependencies needs to check observability of all
ports in a branching. Note that the check for pi 6= pj , as well as the condition on
“at most one” pi being observable are only required because we’re overloading
the A property for both sum activeness and port activeness. Also note that in
Γ =

(
Σ; t ∨ f J t̄ ∨ f̄

)
, a resource (t+ f)A would be preserved, as both t and f

are observable as Γ o t and Γ o f are both well defined and equal to (Σ;> J >)
— they just aren’t observable simultaneously.

Definition 6.2.1 (Removal of Non-Observable Dependencies) Let Γ be
a process type. Removing non-observable dependencies from it is done as in
Definition 5.1.5, with the following additional rules as well, where sA ranges
over branching resources of the form

(∑
i∈I pi

)
A

and there are i, j with pi 6= pj.

• Replace any statement sA/ ε where at most one pi is observable in Γ by >

• In any statement γ / ε, replace any sA in ε by ⊥ if at least one pi isn’t
observable.

The p-reduction operator (Definition 3.7.1 on page 24) works similarly on

branching resources: (
∑
i pi)A o p

def
= > if both p = pi and p 6= pi′ for some

i 6= i′.
To the dependency reduction operator ↪→ (Definition 5.1.3 on page 49) we

add the following rule:
For m 6= 0, p 6= q and ε 6∼= ⊥ 6∼= ε′:

(p+ q + s)A/ ε ∧ pA/ ε
′ ∧ q̄m ↪→ ⊥

This rule simulates a selection and a branching occurring inside a process, by
replacing every term of the branching that does not match the selection by ⊥,

which is the neutral element of ∨. For example the transition t̄ | (t.P+f.Q)
τ−−→

P is matched by (t+f)A∧
(
(tA∧ΓP)∨(fA∧ΓQ)

)
∧ t̄1 ∼=

(
(t+f)A∧tA∧ΓP ∧ t̄1

)
∨(

(t+f)A∧fA∧ΓQ∧ t̄1
)
↪→
(
(t+f)A∧tA∧ΓP ∧ t̄1

)
∨⊥ ∼=

(
(t+f)A∧tA∧ΓP ∧ t̄1

)
.

We require activeness of the branching to prevent the rule from applying in case
there is a risk of race conditions.

The binding operator (νx) (Definition 5.3.2 on page 56) works on sums as
follows:

(νx)

((∑
i∈I

pi

)
A

/ ε

)
=

 ∑
i∈I:n(pi)6=x

pi

A

/ (ν̄x)ε

The degenerated case where {i ∈ I : n(pi) 6= x} is empty gives just >. Also note
how, when I contains a single element, this rule reduces to the one in Definition
5.3.2.

We illustrate the transition operator on the process A (Equation 1.1):

66 CHAPTER 6. ACTIVENESS

The transition A
r(uv)
−−−−−→ A′ = A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄) is matched on ΓA

(6.14) by(
Σ; rωA ∧ rR/ (aAR ∧ bAR) J aω ∧ bω ∧ r0

)
o r(uv) =

ΓA o r � (u : (), v : (); (ūA ∨ v̄A)/ rR J (u+ v)A/ r̄R ∧ (u ∨ v))

The “or” part has no effect, as discussed when illustrating Definition 3.7.1.
Computing the composition works as follows, where the numbers match those
in Definition 4.2.6.

1. The channel type mapping of the resulting process type is just a : Bool, b :
Bool, r : Bool, u : (), v : (). The local component is

rωA ∧ rR/ (aAR ∧ bAR)� (ūA ∨ v̄A)/ rR =

rωA ∧ rR/ (aAR ∧ bAR) ∧ (ūA ∨ v̄A)/ rR

and the environment component is just the conjunction
(
aω ∧ bω ∧ r0

)
∧(

(u+ v)A/ r̄R ∧ (u ∨ v)
)
.

2. Closure of the resulting expression reduces the (ūA ∨ v̄A)/ rR ∧ rR /
(aAR∧bAR) dependency chain, producing the statement (ūA∨ v̄A)/ (rR∧
aAR ∧ bAR).

3. Finally, because of r0 in the environment component, the dependency on
rR can be replaced by > in the above statement, resulting in (ūA ∨ v̄A)/
(aAR ∧ bAR).

Omitting the parts about r’s activeness and responsiveness that were left
unchanged, we end up with(

a : Bool, b : Bool, r : Bool, u : (), v : ();

(ūA ∨ v̄A)/ (aAR ∧ bAR) J

aω ∧ bω ∧ r0 ∧ (u ∨ v)
)

(6.15)

as a type for A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄), where the local behavioural statement
is read as “if active and responsive a and b inputs are provided, then an output
will be sent on (exactly) one of u and v,” which is indeed a correct statement
for that process A′.

Remember that this type was not obtained by analysing A′, but is a predic-

tion of the effect of a transition
r(uv)
−−−−−→ on a process of type ΓA.

6.3 Activeness Semantics

In this section we give semantic definitions for the liveness property “A”, as an
instance of liveness semantics (Section 5.2).

The goodA predicate (characterising immediate correctness of an activeness
statement) is precisely what we called strong activeness in Section 6.1 above.

Definition 6.3.1 (Immediate Correctness) An atomic statement sA/ ε is
immediately correct in a typed process (Γ;P) (written goodA(s/ ε, (Γ;P))) if it
satisfies one of the following rules.

6.3. ACTIVENESS SEMANTICS 67

• A behavioural statement sA/⊥ is always immediately correct.

• An activeness statement (
∑
i∈I pi)A / ε is immediately correct if P ≡

(νz̃)
(
(
∑
j∈J Gj .Cj) | Q

)
with I ⊆ J and ∀i ∈ I : sub(Gi) = pi and

n(pi) 6∈ z̃.

The correctness Definition (5.2.6) — working on port-based properties pk —
works precisely the same way on sA which is a property of a set of ports, you
just need to replace p by s in the Definition.

A strategy doing a labelled transition depends on activeness of the comple-
ment port (see Definition 5.2.5).

Definition 6.3.2 (Activeness Transition Dependencies)
The activeness dependencies of transition µ are given by depA(µ) = sub(µ)A.

To conclude the semantics part, let’s sketch a proof that ΓA given in (6.14)
is a correct type for A given in (1.1). We only pick a representative transi-
tion sequence, but of course a complete proof would have to take all possible
transitions into account.

Following the pattern given in Definition 5.2.6 we shall alternate arbitrary
transition sequences µ̃i (odd-numbered steps below) and transitions provided
by the strategy (even-numbered steps below).

1. We start by sending a request µ̃0 = r(uv) to the process. The resulting
type is given in (6.15), and its behavioural statement is already elementary
(ūA ∨ v̄R contains no “∧” and aAR ∧ bAR contains no “∨”)

2. To bring the process closer to an output on u or v, the strategy sends
the a(νt′f ′) output, which is permitted because its subject ā has its com-
plement a active in the dependencies. The local behavioural statement is
now

(ūA ∨ v̄A)/ (aAR ∧ (t̄′A ∨ f̄ ′A) ∧ bAR)

3. As we do not want to help the strategy find the way out we set µ̃1 = ∅.
However we must still do a projection “↘” which is not trivial because now
the dependency contains a disjunction. In other word we must simulate
the choice made by the a input. Let’s pick f̄ ′:

(ūA ∨ v̄A)/ (aAR ∧ f̄ ′A ∧ bAR)

4. The process is now
A | (t′.b〈uv〉+f ′.v̄)

so the strategy is just to consume the f ′ prefix, which is permitted because
its complement is active (f̄ ′A) in the dependencies.

5. We are now at the process A|v̄. If we do nothing at this point (µ̃2 = ∅),
n = 2 satisfies the requirement as v̄A is now immediately correct. If instead
we consume v̄ with µ̃2 = v̄, the transition operator removes activeness of
both ū and v̄ (see Definition 5.1.3 and the discussion that follows it).
in other words, it replaces the dependency on (aAR ∧ f̄ ′A ∧ bAR) by a
dependency on ⊥ which, by the first point of Definition 6.3.1, is always
immediately correct.

68 CHAPTER 6. ACTIVENESS

Picking t̄′ instead of f̄ ′ at step 3 is essentially the same: the strategy then

follows the
t′−−→

b〈uv〉
−−−−−→ path and the transition operator drops ū ∨ v̄ at the

second transition.

We provide the definition of the propA operator in order to instantiate the
type system given in Section 5.3:

Definition 6.3.3 (Activeness Guard Rule)

propA(G, σ,m,m′) =

{
sub(G)A if #(G) = ω or m′ 6= ?

> otherwise

The activeness sum elementary rule is responsible for introducing sum ac-
tiveness.

Activeness of a branching is guaranteed by a process type having no “con-
current environment pi”, making sure that any attempt to select a branch of
such a sum (by communicating with its guard) will succeed.

Definition 6.3.4 (Concurrent Port Use) Let {pi}i∈I be a set of ports.

• A behavioural statement Ξ is said to have concurrent pi if @i ∈ I such
that

∧
i′∈I\i(pi′

0) � Ξ.

• A behavioural statement Ξ ∨ Ξ′ has concurrent pi if and only if (at least)
one of Ξ or Ξ′ has.

• A process type (Σ; ΞL J ΞE) has concurrent environment pi if and only if
ΞE has concurrent pi.

Definition 6.3.5 (Activeness Sum Rule)

sumA({pi}i,Ξ) =

{
> if Ξ has concurrent environment pi

(
∑
i pi)A otherwise

To obtain the ΞE term in (E-Sum), the simplest way is to just leave ΞE

at the weakest possible permitted by the rule, but this is usually not desirable
because it often causes the sum activeness to drop. On the other hand this
permits deactivating the type system check for race-conditions like

a.P+b.Q | ā | b̄ (6.16)

A usually preferable way is to take

ΞE =
∧
i

ΞEi ∧
∨
i

∧
j 6=i

p̄0
j

which forces (
∑
i pi)A to hold, but would reject (6.16) as unsafe.

6.4. A TYPING EXAMPLE 69

6.4 A Typing Example

We now illustrate the type system by proving that

rR/ (aAR ∧ bAR) (6.17)

(r is responsive if both a and b are active and responsive) can be built from
the process (1.1) on page 5. All rules of the type system except (E-Par) are
used in this derivation so we’ll describe them in the order they are used. For an
explanation of (E-Par), refer to the description of � in Section 3.9. The reader
may want to follow the rules on page 56 in parallel with this development.

Strictly following the rules gives a behavioural statement containing every
possible statement that can be made about the process, so types can become
rather large even for simple processes. So in this example we omit parts of the
types that are not used to compute r’s responsiveness dependencies. Typing
is syntax directed, starting from invocations of (E-Nil) (that types the idle
process with the neutral element of �).

We start with the parameter-less output f̄ , which is typed using the prefix
rule (E-Pre). The name is linear (m = m′ = 1) and, since there are no
parameters or continuation, only the first two factors of the typing, as well as
the k = A in the last one, are non-empty (different from �’s neutral element),
leaving us with:

(
f : (); J f̄1 ∧ f1

)
�
(
; f̄1 J

)
� (; propA(σ,G,m,m′) J), that

is: (
f : (); f̄A J f̄0 ∧ f1

)
` f̄ (6.18)

Sequence G.P is typed much like parallel composition G|P , except that exis-
tential resources in P additionally depend on depA(G) = sub(G)A, activeness of
the complement of G’s subject port sub(G). Thanks to this, analysing a bound
output a(νb).Pb (where Pb is an input on b) or its encoding (νb) (a〈b〉 |Pb) in
asynchronous π-calculus produces the exact same type. For our process, f ′.f̄
is again typed with (E-Pre), where all terms but the fourth are now non-null
and Γ is the type of the continuation given in (6.18):(

f ′ : (); J f ′
1 ∧ f̄ ′1

)
�
(

; f ′
1
A/> J

)
� Γ/ f̄ ′A `AR f ′.f̄

Dropping the f ′
1
A statement we get(

f : (), f ′ : (); f̄A/ f̄
′
A J f̄0 ∧ f1 ∧ f ′0 ∧ f̄ ′1

)
`AR f ′.f̄ (6.19)

Remote behaviour σ[tf]/ p̄AR states that, if the input on b is active and
responsive then it will behave according to the protocol specified in the channel
type whenever queries are sent to it. For the b〈tf〉 process, this is written
(t̄A ∨ f̄A)/ bAR, where the left side is just (6.11) from page 63 with t and f
replacing 1 and 2 (and omitting terms with a zero exponent). The environment
component t1 ∨ f1 limits many times the local side is permitted to use the
parameters’ ports, which effectively prevents any part of the process to do at t
and f anything more than a input-guarded sum at t and at f . Together with
the subject b handled as in previous examples, we get the following:

(
b : Bool, t : (), f : (); (t̄A ∨ f̄A)/ bAR J (t1 ∨ f1) ∧ (b̄? ∧ bω)

)
`AR b〈tf〉

(6.20)

70 CHAPTER 6. ACTIVENESS

As in (6.19), the t′-prefix adds a dependency on depA(t′) = t̄′A to all active-
ness resources, effectively turning the bAR dependency into bAR ∧ t̄′A:

(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A) J (t1 ∨ f1) ∧ (b̄? ∧ bω)

)
`AR t′.b〈tf〉 (6.21)

A sum T +F is given, through (E-Sum), the type (t′+ f ′)A/ ε∧ (ΓT ∨ΓF),
where ΓT and ΓF are respectively the types of T and F , and t′, f ′ their guards:
depending on the above definition, the process may (ε = >) or may not (ε = ⊥)
offer a branching t′+f ′, and, in addition (“∧”) selects (“∨”) one of ΓT and
ΓF . The decoupling between the guards and the continuations is done to make
explicit which channels must be used to make the process branch. Note how
the original existential type system, without support for sum activeness, does
not do this distinction and therefore gives precisely the same type to P+Q and
P ⊕Q.

In the example (1.1), in addition to (t′+ f ′)A, the type for the continuation
of the a-output is obtained from (6.19) and (6.21):(

Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A) ∨ (f̄A/ f̄
′
A) J

(t1 ∨ f1) ∧ b̄? ∧ bω ∧ f̄0 ∧ f ′0 ∧ f̄ ′1
)
`AR t′.b〈tf〉+f ′.f̄ (6.22)

We run (E-Pre) once more in order to type the full a-output. Now the
guard has two bound names bn(a(νt′f ′)) = {t′, f ′}. For our purposes we only
need the third and fourth terms:

• Remote behaviour
(
t′: (), f ′: (); (t̄′A ∨ f̄ ′A)/ aAR J t′

1 ∨ f ′1
)

• Continuation(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A ∧ aA)∨ (f̄A/ (f̄ ′A ∧ aA)) J

(t1 ∨ f1) ∧ b̄? ∧ bω ∧ f̄0 ∧ f ′0 ∧ f̄ ′1
)

For the first time, the � operator has to do dependency reduction (Definition
5.1.3 on page 49): The remote behaviour provides either t̄′A/ aAR or f̄ ′A/ aAR,
and in the continuation either (t̄A ∨ f̄A) depends on t′A, or f̄A depends on f ′A.
Remember, for existential resources like activeness, if α depends on β and β
on γ, then α depends on (β ∨ γ), so the two behavioural statements in the
continuation become respectively (t̄A ∨ f̄A)/ (t′A ∨ aAR) and f̄A/ (f ′A ∨ aAR).

Combining the above five factors and binding t′ and f ′ yields the following:

(
a : Bool, t : (), f : ();

(t̄A ∨ f̄A)/ (bAR ∧ aAR) ∨ f̄A/ aAR J

aω ∧ (t1 ∨ f1)
)
`AR a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (6.23)

A port is responsive if it provides all resources given in the channel type,
which is what the propR elementary rule (Definition 4.8.2, page 46) states. For
r(tf), this is written rR/ (t̄A ∨ f̄A), where the right hand side is just (6.5) from
page 63 with t and f replacing 1 and 2. Composing with (6.23) reduces the
dependency chain and we obtain rR/ (bAR ∧ aAR), as required.

6.5. DISTRIBUTED PROPERTIES AND τ -ACTIVENESS 71

6.5 Distributed Properties and τ-Activeness

Most existential properties have elementary rules producing statements of the
form

∧
i γi / >, i.e. these resources are in some sense local, in that they are

available at one particular point in the process. However this is not true of all
resources. We already saw responsiveness as an example of universal resource
that is provided through the collaboration of more than one part of a process,
as in a〈b〉 | b.0 where a〈b〉 provides aR conditional on bA which is itself provided
by b.0.

The following proposition summarises what is required of distributed prop-
erties to ensure soundness. It is rather technical but basically enforces the
semantics of / : if an elementary rule produces a statement α/ β (with both α
and β existential) then composing with another process providing β must yield
a process in which α is immediately available without dependencies.

Proposition 6.5.1 (Soundness of Distributed Properties) Let K be a set
of properties including R. Then Γ `K P implies Γ |= P for all Γ and P if
elementary rules for all k ∈ K ∩ E satisfy the following:

Let pk/
∧
i∈I αi � propk(G, σ,m,m′) with αi = piki , and let IE = {i ∈ I :

ki ∈ E}. Pick an arbitrary collection of guards Gi (and types σi, multiplicities
mi, m

′
i) with i ranging IE and propki(Gi, σi,mi,m

′
i) � αi. Then:

goodk(p /
∧

i∈I\IE

αi, (Γ�
⊙
i∈IE

Γi;G |
∏
i∈IE

Gi))

This is proved as part of the Soundness proof, Section 7.6.
Although not that useful in practice, one example of a non-local existential

resource is τ -activeness, written τA, and meaning that the process will eventually
do a τ -transition.

For semantics, goodA(ε/>, (Γ;P)) holds if P
τ−−→ P ′ for some P ′, in addition

to what is given in Definition 6.3.1. The elementary rule sets

propA(G, σ,m,m′)
def
=

{
sub(G)A ∧ (τA/ sub(G)A) if #(G) = ω or m′ 6= ?

> otherwise

One can easily verify this elementary rule satisfies the requirements of the
above Proposition: The elementary rule only produces a non-local statement
τA / p̄A on a guard G with subject p, and the only way to produce a p̄A-
resource is a guard G′ with subject p̄. Composing the two processes as in the
Proposition yields G |G′ which, using the (Com) rule of the labelled transition
system, produces the τ -transition G |G′ −→ 0, as required by the semantics.

For instance ā has type āA ∧ (τA / aA), and composing it with process a
produces the type (āA ∧ (τA/ aA)) � (aA ∧ (τA/ āA)) ∼= aA ∧ āA ∧ τA. If a is
linear, removal of unobservable dependencies returns just τA for a|ā.

The typing rules make sure that the two complement guards eventually come
to top-level so that they can communicate and produce a τ -transition. One
tricky counter-example is a+ā which, using the (E-Sum) rule, produces

(a+ ā)A ∧
(
(āA ∧ (τA/ aA)) ∨ (aA ∧ (τA/ āA))

)
where no further reduction can occur because for instance τA / aA and aA
are on different branches of the disjunction. Another tricky case is a.ā. The

72 CHAPTER 6. ACTIVENESS

continuation has type āA∧(τA/aA), which has the (E-Pre) gains the additional
dependency depA(a) = āA, becoming āA/āA∧(τA/(āA∧aA)) ∼= τA/(āA∧aA).
Composing it with propA(a, (), 1, 1) = aA ∧ (τA/ āA) we get aA ∧ (τA/ ((āA ∧
aA) ∨ āA)) ∼= τA/ āA which, by removal of the non-observable āA-dependency,
becomes τA/⊥, or just >.

Chapter 7

Structural Analysis

We will now leave universal and existential properties aside for a while and
introduce a representation of process behaviour that is intermediary between
the process syntax and a transition sequence, as summarised in Section 1.8 in
the Introduction.

This framework is useful for proving soundness of the existential type system,
provides a compact representation of liveness strategies, and is also useful as
we’ll see in the end of this section in deriving semantics and elementary rules
for channel properties from a corresponding process-level property.

In order to keep track of the relation between behavioural statements and
parts of process types we make two changes to processes, to enforce a certain
structure making its analysis easier (without loss of generality, as every process
is structurally congruent to a process of that form), and adding the depen-
dency events mentioned in Section 5.4 into the process syntax. Specifically, an
annotated process is any production from P in the grammar below.

Extended names are used to distinguish between different private channels
with the same name. for instance, using the standard π-calculus transition
rules (ignoring the l-annotations), a τ -transition on a in ! al.(νn)P | āl′ would
result in the process ! al.(νn)P | (νn)P , that has two distinct channels with
the same name n. Using extended names we can write the resulting process
! al.(νn)P | (νl′. n)P ′, where the extended name l′. n gives information on how
that binding was brought to top-level. An “extended event” similarly records
what has happened to a given event annotation in the past.

Extended names and events are constructed by the labelled transition system
on annotated processes (see page 85 and following). Up to that point the reader

P ::= (νx)P
∣∣ Ppar

Ppar ::= (Ppar |Ppar)
∣∣ Psum

∣∣ 0

Psum ::= (Psum +Psum)
∣∣ Gl.P

G ::= !Gnorep

∣∣ Gnorep

Gnorep ::= (νx)Gnorep

∣∣ a〈x̃〉
∣∣ a(ỹ)

Extended event: l ::= l. l
∣∣ • . l

∣∣ l

Extended name: a, x, y ::= l. x
∣∣ • . l

∣∣ x

Table 7.1: Annotated Process Syntax

73

74 CHAPTER 7. STRUCTURAL ANALYSIS

may assume that all x and l encountered are simple names and events “x” and
“l”.

In general we use the same letters P , Q, etc for both annotated processes
and processes, and specify if a name corresponds to an annotated process in
case of ambiguity.

Definition 7.0.2 (Annotation Removal — Processes) Let Q′ be an an-
notated process. Removing the event annotations (written ran(Q′)) is done
by repeatedly replacing every instance of Gl.P , and every extended name l. x of
the Psum and x rules in the grammar above by just G.P (respectively, x).

We will use the Barendregt convention on bound names as we will need to
individually address bound channels by name:

Definition 7.0.3 (Annotated Form) Let Q be a process. An annotated form
of Q is any annotated process Q′ not using the same event more than once and
such that all bound names are distinct from each other and from free names,
such that ran(Q′) =α Q.

Example 7.0.4 An annotated form of the process P = (νa) (a(x).x̄ | a〈b〉) is

P ′ = (νa) (a(x)
l1 .x̄l2 | a〈b〉l3), and ran(P ′) = P .

It is easy to see that every process has at least one annotated form, by
α-renaming bound names and for instance numbering all guards from left to
right.

7.1 Strategies and Annotated Process Types

We modify the process types so that in some sense they contain the proof of
their validity, by attaching strategies to every existential dependency statement.

Formally:

Definition 7.1.1 (Liveness Strategy) Strategies are produced by the follow-
ing grammar:

ρ ::= π̃ (π̃)δ
∣∣ πδ

∣∣ s

s ::= s+l
∣∣ l

δ ::= . ρ
∣∣ [s]

π ::= (l|ρ)
∣∣ (l|ρ]

∣∣ (l|•)
∣∣ (ρ|•]

∣∣ (•|ρ)

π̃ ::= π. π̃
∣∣ π

An annotated existential dependency is an expression of the form

sk / ε : ρ,

read “Strategy ρ provides sk and depends on ε”.

Strategies refer to individual guards G by the unique event l they are at-
tached to. And inversely statements such as “l1 is at top-level” or “l1 is

l2’s guard” refer to the attached guard, as in process a(y)
l1 .b〈y〉l2 . A sum

G1
l1 .Q1 +G2

l2 .Q2 is referred to by l1+l2. Formally:

7.1. STRATEGIES AND ANNOTATED PROCESS TYPES 75

Definition 7.1.2 (Top-Level and Guards) A sum s =
∑
i∈I li is at top-

level in a process P if P ≡ (νz̃) (
∑
j∈J Gj

lj .Qj | R) where {li}i∈I = {lj}j∈J .

An event l guards a sum s in a process P if P = C[Gl.Q] where s is at
top-level in Q.

A sequence π1. π2. · · · . πn. l (abbreviated π̃. l) indicates how to bring a guard
l to top-level. An individual step πi = (li|ρi) tells to bring event li to top-level,
using ρi to find a communication partner (ρi = • means the communication
partner is to be found in the environment, i.e. li should be brought to top-level
with a labelled transition rather than a τ). In that sequence, l1 must be at top-
level in the process, and li must be li+1’s guard (This is enforced by runnability,
cf. Definition 7.2.3). In such a sequence, a step l can only appear at the end
as it represents successful termination of a strategy, so l. ρ is not a meaningful
strategy.

The step (l|ρ) in (l|ρ). ρ′ is said doubly-anchored (round bracket), meaning
that both l and ρ must be accurately followed in order for that step to be suc-
cessful. In contrast a singly-anchored step is written (l|ρ]. ρ′ (square bracket)
where the step is successful as soon as l is consumed, even if not by commu-
nicating with ρ (note that the left bracket is still round, to emphasise the fact
that l must be accurately followed, unlike ρ). Consider the process

P = a(y)
la .(s̄ls̄ | ȳlȳ .t̄lt̄) | a〈b〉l1 | a〈c〉l2 | blb . (7.1)

In this example we named events according to their guard ports merely for
readability — another convention would have to be used in case a port is used
more than once in subject position.

One strategy for s̄ is (la|l1]. ls̄ because it doesn’t matter what la is commu-
nicating with, as long as it is consumed. One strategy for t̄ is (la|l1). (lȳ|lb]. lt̄
because a must communicate with a〈b〉 labelled l1 otherwise ȳ won’t get sub-
stituted to b̄ and won’t be able to communicate with b, preventing the next
strategy step from occurring. On the other hand, if ȳ communicates with some
other b-input somewhere else, the strategy still works, so that second step is
singly-anchored.

The expression π1. π2. · · · . πn (π̃′)δ represents a strategy following the se-
quence of steps from π1 to πn but, as it is about to consume step πn, gets

“hijacked” by a transition in a Pj
µ̃j−−−→ P ′j sequence from Definition 5.2.6. The

π̃′ part is a sequence of steps forced by that sequence and is such that its last
step prevents πn from taking place (for instance a step (l|ρ2) prevents a step
(l|ρ1) if l is not replicated). The δ tells how the strategy reacts to it.

Finally, (•|l) [p], where p is one of n or n̄ for some number n, tells to consume
l with a labelled transition, and that the required resource (whose liveness is
being proved) is respectively the input or the output at l’s nth parameter. Note
that such a step can’t follow a step as in (l0|ρ). (•|l) [p], because that would
mean that • is guarded by l0, which is impossible as • is by definition in the
environment and l0 is in the process. Strategy (•|(l0|ρ). l) [p], on the other hand,
is sensible (“use ρ to consume l0 and thereby bring l to top-level, then consume
l, to obtain liveness on its parameter port p”).

Example 7.1.3 Consider the following process:

P = ! tlt | ! a(x)
la .t̄lt̄ .x̄lx̄ | a〈b〉lā .blb .clc .s̄ls̄

76 CHAPTER 7. STRUCTURAL ANALYSIS

which is an annotated form of ran(P) = ! t | ! a(x).t̄.x̄ | a〈b〉.b.c.s̄.
The strategy for s̄A/ c̄A is ρ = (lā|la).

(
lb
∣∣ (la|lā). (lt̄|lt]. lx̄

]
. (lc|•]. ls̄ (so the

annotated dependency is s̄A / c̄A : ρ). This strategy contains four steps, corre-
sponding to the event stack lā, lb, lc and ls̄.

1. The first step does a τa-transition to bring lā and la to top-level.

2. In the second step, (la|lā). (lt̄|lt]. lx̄ tells how to find a communication part-
ner for b, by first bringing the la and lā events to top-level (note that this
step may seem redundant since it duplicates the previous step and doesn’t
correspond to an actual transition. However it may become necessary to
unambiguously identify which instance of the replicated a-input we are
talking about. So this lā step really means we are going to work on the
instance of ! a(x).t̄.x̄ that was created when lā was brought to top-level,
and not any other). The (lt̄|lt] step is a τ -transition between t̄ and t, and
the final step lx̄ of the sub-strategy is our communication partner for b
consumed with a τ -transition.

3. The third step (lc|•) of the strategy indicates that c’s communication should
be found in the environment, i.e. the strategy does a c-labelled transition
at this point.

4. The final step ls̄ indicates where to find the s̄, closing the liveness proof.

In this particular case, if a is input plain, the dependency statement becomes
s̄A / (c̄A ∧ aR), which can be written (s̄A / c̄A) ∨ (s̄A / aR). The strategy for
s̄A/ aR is

(lā|la) (lā|•).
(
(lb|(•|lā)[1]]. (lc|•]. ls̄

)
:

If a transition sequence µ̃i from (5.2.6) consumes the a-output through the

transition
a〈b〉
−−−−→ then it amounts to forcing ā’s communication partner to be

•, and the strategy on the right of the is followed, doing a labelled transition
b−−→ instead of

τb−−−→. The b-output, communication partner of lb, is obtained
with (•|lā)[1].

Note that the strategy (lā|•).
(
(lb|(•|lā)[1]]. (lc|•]. ls̄

)
on its own corresponds

to the statement s̄/(depK(a〈b〉)∧aR) — the strategy itself decided to do a labelled

transition
a〈b〉
−−−−→, and therefore requires depK(a〈b〉) from the environment (in

the K = A-case that’s aA, activeness on a).
The following example shows more clearly how depk and responsiveness de-

pendencies appear in strategies:

P =
∏
i∈I

ti
lti .a(x)

lai .ui
lui .x̄lxi | a〈s〉lā

(where ran(P) =
∏
i∈I ti.a(x).ui.x̄ | a〈s〉). That process satisfies the statement

s̄A/
∨
i∈I
∧
j∈I (t̄iA ∧ ūjA) or, equivalently,∨

j∈I

∧
i∈I

(
s̄A/ (t̄iA ∧ ūjA)

)
(7.2)

Any strategy for s̄A can choose an i ∈ I (the communication partner it will select
for a in the absence of interference), which causes the dependency on t̄iA, but,

7.1. STRATEGIES AND ANNOTATED PROCESS TYPES 77

in an actual run, it can be forced a connection with the a-input corresponding
to any j ∈ I, after which it will require ūjA. The strategy for that scenario is
ρij = (lti|•]. (lai|lā)

(
(ltj |•]. (laj |lā)

)
. (luj |•]. lxj and depends on t̄iA ∧ ūjA: The

strategy prepares a communication between lā and lai by consuming the ti-prefix
(which causes the dependency on t̄iA). But then the communication on ā is

hijacked with the sequence
tj−−→ τ−−→ where the latter transition consumes laj.

Note how the two corresponding steps are grouped by brackets in the strategy to
distinguish the part caused by external interference (not creating dependencies)
and the strategy’s reaction, which is to consume the uj-prefix (causing a ūjA-
dependency) to bring s̄ to top-level.

Inserting strategies ρij into the behavioural statement (7.2) gives the follow-
ing annotated statement for P :∨

j∈I

∧
i∈I

(
s̄A /

(
t̄iA ∧ ūjA

)
:
(
(lti|•]. (lai|lā)

(
(ltj |•]. (laj |lā)

)
. (luj |•]. lxj

))
We will often set conditions on strategies and strategies they contain. The

following definition makes that concept precise.

Definition 7.1.4 (Sub-strategies) The contains relation is the least transi-
tive relation on liveness strategies such that:

• Let ρ = π1. · · · . πn−1. s where πi ∈ {(li|ρi), (li|ρi]}. Then, for all 1 ≤ i <
n, ρ contains ρi and π1. · · · . li.

• Let ρ = π1. · · · . (ln|ρn) (π̃′)δ. Then ρ contains (π1. · · · . ln), ρn and π̃′δ.

• Let ρ = (•|ρ0) [s]. Then ρ contains ρ0.

If ρ contains ρ0, the latter is called a sub-strategy of the former.

Just like liveness strategies prove correctness of an existential dependency
statement, responsiveness strategies prove correctness of a responsiveness state-
ment. The idea is to attach a strategy to every element of the behavioural
statement as found in the channel type:

Definition 7.1.5 (Responsiveness Strategy) A responsiveness strategy is
an expression ρ. φ where φ is generated by the following grammar:

φ ::= sk : ρ
∣∣ pR : ρ. φ

∣∣ pR : •
∣∣ φ ∨ φ

∣∣ φ ∧ φ
∣∣ > ∣∣ •

where k ranges over E, p over numerical ports and s over sums of numerical
ports.

Definition 7.1.6 (Annotated Responsiveness Statement) Removing the
annotations of a responsiveness strategy φ (in which • may only appear behind a
“γ :” prefix), written ran(φ), is the logical homomorphism yielding a dependency
ε such that

• ran(sk : ρ)
def
= sk

• ran(pR : ρ. φ)
def
= pR

78 CHAPTER 7. STRUCTURAL ANALYSIS

Let p be a port and ξ the corresponding behavioural statement in the channel
type. Then an annotated responsiveness statement for p is an expression of the
form pR / ε : ρ. φ where ran(φ) = ξ.

In pR / ε : ρ. φ, ρ tells precisely which p-prefix is being talked about, and φ
gives the strategies of its parameters, if any.

Note the distinction, in a responsiveness strategy, between pR : l.> and
pR : • — the former occurs for channels with trivial behavioural statements
(e.g. parameterless channels), therefore always responsive, and the latter oc-
curs for channels that do not appear in a process, and are therefore vacuously
responsive.

Delegated responsiveness such as b in a〈b〉l is expressed with statements
like bR / aAR : (•|l) [1] . • where (•|l) [1] specifies any remote use of b and •
indicates that responsiveness is provided by the environment. Compare with
bA / aAR : (•|l) [1] that represents remote activeness on b.

Liveness and responsiveness strategies can be put together as follows:

Definition 7.1.7 (Annotated Behavioural Statement) An annotated be-
havioural statement (ranged over by Φ) follows the grammar for ∆ given in
(1.2) on page 6, but where the γ / ε rule is replaced by annotated statements
(k ∈ E)

· · ·
∣∣ sk / ε : ρ

∣∣ pR / ε : ρ. φ
∣∣ · · ·

Definition 7.1.8 (Annotated Process Type) An annotated process type is
a structure of the form (Σ; ΦL J ΞE) where ΦL is an annotated behavioural
statement, and ΞE a behavioural statement.

Removing strategy annotations from an annotated process type is again done
by the ran operator, that recursively replaces sk / ε : ρ and pR / ε : ρ. φ by sk/ ε
and pR/ ε, respectively.

7.2 Structural Semantics: Consistency

In this section we provide precise semantics for annotated behavioural state-
ments. Semantics are split into two parts. Consistency requires a strategy to
only attempt making two prefixes communicate if they have complement ports
and are at top-level. Completeness in Section 7.3 requires to have a strategy for
every possible interference.

The sub operator gives the port brought to top-level by the given strategy, the
obj operator gives the objects of the prefix brought to top-level, and substP (π)
is the name substitution applied by a strategy step π.

For instance, having P = a(x)
la .b〈x〉lb | a〈t〉lā :

subP ((la|lā). lb̄) = b̄, objP ((la|lā). (lb̄|•)) = t, and substP ((la|lā)) = {t/x}.
Special care is required for bound names, as a single (bound) name can

refer to more than one actual channel over the run of a process. For instance,
having P = ! ala .(νn)Q | āl1 .Q1 | āl2 .Q2, there are two distinct channels n to
be considered, for each i, the one brought to top-level with Qi, which is the
value of sub((la|li). ρ) (assuming sub(ρ) = n). These two n-channels are written
(la|li).νn for i ∈ {1, 2}.

More generally, separate instances of a bound name x are identified by pre-
fixing νx with a sequence of strategy steps π̃.

7.2. STRUCTURAL SEMANTICS: CONSISTENCY 79

Such “extended port names” obey the following grammar:

p ::= π. p
∣∣ νp

∣∣ p

Quotiented by the congruence given by the relation ∀π, p : π. p 7→ p (i.e. only
bound names may be prefixed).

The complement p of such an extended port is obtained with π. p
def
= π. p

and νp
def
= νp̄.

Definition 7.2.1 (Strategy Subject and Objects) Let P be a process of
the form C[(νz̃) (R | Gl.Q)].

The subject of a strategy ρ in P is a port written subP (ρ). The objects of
a sequence of steps π̃ in P is a name sequence written objP (π̃).

The substitution associated with a sequence of steps π̃ in P is a function
mapping names to extended ports written substP (π̃). We write substP (π̃)a to
apply the function substP (π̃) on name a. By extension, substP (π̃)p is the identity
if p is not a free port, and substP (π̃)a if p = ā. It acts on each extended port
individually when passed a tuple as in substP (π̃)p̃. Finally, a substitution applies
individually to each free name when given entire guards as in substP (π̃)G.

These three functions are defined inductively on ρ, according to the following
rules:

1. subP (l)
def
= (νz̃) sub(G) (where (νz̃) p is νp if p = p and n(p) ∈ z̃, p

otherwise).

2. subP (π̃. l) = substP (π̃)subP (l)

3. subP (π [p])
def
= objP (π̄) [p]

(where (x1, . . . , xn) [i] = xi and (x1, . . . , xn)[ı] = xi)

4. subP (π̃ (π̃′)δ)
def
= subP (π̃′δ)

5. objP (π̃. (l|ρ))
def
= substP (π̃. (l|ρ))obj(G).

6. substP (π̃. (l|ρ))a
def
= a if a 6∈ (bn(G) ∪ z̃)

7. substP (π̃. (l|ρ))a
def
= π̃.νa if a ∈ z̃

8. substP (π̃. (l|ρ))(obj(G) [i])
def
= objP ((ρ|π̃. l)) [i] if G is an input and if

ρ 6= •.

9. substP (π̃. π)a
def
= π̃. π.νa if a ∈ bn(G) and either π = (l|ρ] for some ρ,

or π = (l|•), or G is an output and π = (l|ρ) for some ρ.

10. All operators used in this definition commute with sums, e.g.

subP (
∑
i

li)
def
=
∑
i

subP (li)

(νz̃)
∑
i

pi
def
=
∑
i

(νz̃) pi

subP (π

[∑
i

li

]
)

def
=
∑
i

subP (π [li])

80 CHAPTER 7. STRUCTURAL ANALYSIS

We omit the index P when there is no ambiguity.
As said earlier, one application of strategies is to prove availability of an

existential resource pk, i.e. that following the strategy brings to top-level a
guard Gl that propk declares to provide resource pk. Assume, without loss of
generality (see below) that elementary rules all produce a single statement of
the form pk/ ε, where p and ε are computed depending on the guard or sum it
is applied to.

As propk commutes with substitution (Definition 4.4.1), n(p) either belongs
to sub(G)∪obj(G) or is a “fake” port such as proc or τ . We can define accordingly
a target function:

Definition 7.2.2 (Target Function) Let k be a property whose elementary
guard (respectively, sum) rule is of the form propk(G, σ,m,m′) = pk/ ε, where p
depends on G and ε on any of G, σ, m and m′. Then the corresponding target
function trgk,P :

• maps event labels to resources such that propk(G, σ,m,m′) = trgk,P (l)k/ ε

for some ε if Gl appears in P .

• The target of a sum trgk,P (l1 + l2 + . . .) similarly extracts the resource
from the elementary sum rule.

• A target function is generalised to arbitrary strategies (writing trgk,P (ρ))
by applying substitutions as in Definition 7.2.1.

• The target of a delegating strategy is given by

trgk,P ((•|ρ) [s])
def
= subP ((•|ρ) [s])

Elementary rules commuting with substitutions implies

trgk,G{x̃/̃y}(l) = trgk,G(l){x̃/̃y}

The case of elementary properties producing more than one statement is
obtained by splitting the properties (for instance the τ -activeness elementary
guard rule produces statement of the form τA/ε∧pA/ε′, but it can be split into
two existential properties A and A′, having respectively elementary guard rules
of the form τA/ ε and pA′ / ε

′. Forking A into two resources A and A′ is only
required to know which part of the elementary rule the strategy is interested in,
and the same result could be obtained by including this information in liveness
strategy themselves, as in “ρ provides resource γ by using the ith factor of
k’s elementary rule”. For properties studied in this thesis, trgk,P (ρ) is one of
subP (ρ)k, τk, prock (Section 7.7) and sk where s is a sum (Chapter 6).

As a first step to deciding correctness of a strategy, the following definition
tells whether a strategy for an liveness resource γ is actually able to bring its
target guard to top-level in the absence of interference. Note that it is not
really useful as is because a strategy may in some way interfere with itself
(e.g. in (l1|ρ1). (l2|ρ2). l3, ρ1 could interfere with ρ2). On the other hand, this
notion combined with the completeness introduced in the next section becomes
sufficient for correctness of a type.

In the fourth point, let subP (ρ) = p, n(p) = a and Σ(a) = (σ̃; ξI; ξO) (Σ
being Γ’s channel type mapping). Then ΣP (ρ) is ξI if p = a and ξO if p = ā.

7.2. STRUCTURAL SEMANTICS: CONSISTENCY 81

Definition 7.2.3 (Runnable Strategy) Let (Γ;P) be a typed process. Then
a strategy is (Γ;P)-runnable if and only if it satisfies all the following rules:

• A strategy is only (Γ;P)-runnable if all its sub-strategies are also (Γ;P)-
runnable.

• A strategy s is (Γ;P)-runnable if s is at top-level in P in the sense of
Definition 7.1.2.

• For a strategy π̃. (l|ρ). s, let p = subP (π̃. l). Then:

– l guards s in P , in the sense of Definition 7.1.2.

– If ρ = •: p = p for some p and Γ↓p
– If ρ 6= •: subP (ρ) = p̄.

• For a strategy (•|ρ) [s], subP (ρ) = p for some p, Γ↓p and ΣP (ρ)↓s

• For a strategy π̃. (l|ρ) (π̃′. (l′|ρ′))δ, π̃. (l|ρ) is runnable (checked by ignor-
ing the condition on s in first point), and either ρ = ρ′ or π̃. l = π̃′. l′.

Note how the semantics of “(l|ρ)” versus “(l|ρ]” affect runnability through
the definition of sub. The substitution subst(π) is only applied to subsequent
objects and subjects when π is doubly anchored (cf. Definition 7.2.1). Therefore,
in process (7.1) on page 75, strategy (la|l1]. (lȳ|lb]. lt̄ is not runnable because the
first step is singly-anchored and so doesn’t apply a substitution on its object y,
and so, in the next step, (extended) ports (la|l1).νȳ and b aren’t complements.
On the other hand, strategy (la|l1). (lȳ|lb]. lt̄ is runnable because now the first
step applies the substitution {b/y}, so ports in the next step become complements
(b̄ and b), as required.

If a strategy ρ with target γ is runnable then there is some ε such that
γ / ε : ρ is correct in absence of interference. The following definition gives a
lower bound (proved as a part of Lemma 7.4.10) on ε. It builds on the depK
operator (Definition 5.2.5). Dependency dep−K,P (ρ) gives the resources required
to bring ρ’s target to top-level, while depK,P (ρ) gives the resources required to
consume its target with a labelled transition.

Definition 7.2.4 (Dependencies of a Strategy) Let P be a process and ρ
a runnable strategy.

Then ρ’s K-dependencies with respect to P , written dep−K,P (ρ), is the depen-
dency ε defined as follows.

• depK,P (l)
def
= depK(G) if P = C[Gl.Q] for some Q and C[·].

• The general case of depK,P (ρ) builds on the previous rule like Defini-
tion 7.2.1 does for subP .

• dep−K,P (s)
def
= >

• dep−K,P ((•|ρ) [s])
def
= dep−K,P (ρ) ∧ depK,P (ρ) ∧ subP (ρ)R

• dep−K,P ((l|•)) def
= dep−K,P ((l|•]) def

= depK,P (l)

• dep−K,P ((l|ρ))
def
= dep−K,P ((l|ρ])

def
= dep−K,P (ρ)

82 CHAPTER 7. STRUCTURAL ANALYSIS

• dep−K,P (π. ρ)
def
= dep−K,P (π) ∧ dep−K,P (ρ).

• dep−K,P (π̃. (l|ρ) (π̃′). ρ2)
def
= dep−K,P (π̃. l) ∧ dep−K,P (ρ2)

• dep−K,P (π̃. (l|ρ) (•|ρ′) [p̃])
def
= dep−K,P (π̃. l) ∧ subP (ρ′)R

In the next to last point, π̃′ is irrelevant when computing a strategy’s de-
pendencies. The reason is that dep computes what is required by the strategy
to progress on its own, while π̃′ represent interference being forced upon it. In
the last point the strategy requires remote responsiveness but not depK,P (ρ′),
for the same reason.

For responsiveness, the dependencies are obtained by putting together the
dependencies of every component in the strategy. Note how it requires the re-
sponsiveness strategy φ to closely follow the structure of the behavioural state-
ment ξ.

Definition 7.2.5 (Dependencies of a Responsiveness Strategy)

Let p be a port whose parameter types are σ̃, and whose behavioural statement
in the channel type is ξ. We define σ̃i and ξq so that σi = (σ̃i; ξi; ξı̄).

The dependencies rdepK,P (σ̃, ξ, φ) of a responsiveness strategy φ for p is
inductively obtained as follows:

• rdepK,P (σ̃,>,>) = >

• rdepK,P (σ̃, ξ1 ∨ ξ2, φ1 ∨ φ2) = rdepK,P (σ̃, ξ1, φ1) ∨ rdepK,P (σ̃, ξ2, φ2)

• rdepK,P (σ̃, ξ1 ∧ ξ2, φ1 ∧ φ2) = rdepK,P (σ̃, ξ1, φ1) ∧ rdepK,P (σ̃, ξ2, φ2)

• rdepK,P (σ̃, sk/ ε, sk : ρ) = dep−K,P (ρ) \ ε

• rdepK,P (σ̃, qR/ ε, qR : ρ. φ) = rdepK,P (σ̃n(q), ξq, φ) \ ε

• rdepK,P (σ̃, γ/ ε, •) = γ

Runnability is lifted to process types, by requiring each of its strategies to
be runnable and respect the declared dependencies:

Definition 7.2.6 (Consistent Typed Process) An annotated typed process
(Γ;P) is said consistent with respect to a set of existential properties K if

• for every liveness statement sk / ε : ρ in Γ’s local component, ρ is runnable
for P , dep−K,P (ρ) � ε and trgk,P (ρ) = sk.

• for every responsiveness statement pR / ε : ρ. φ in Γ’s local component, for
every liveness strategy ρ′ appearing in φ, (ρ|•). ρ′ is runnable for P and
rdepK,P (σ̃n(p), ξp, φ) � ε, writing (σ̃a; ξa; ξā) for the type of a channel a in
Γ.

7.3. STRUCTURAL SEMANTICS: COMPLETENESS 83

7.3 Structural Semantics: Completeness

There are two forms of choices that a process (whether it is selection or branch-
ing) can do. The most obvious is the π-calculus sum operator P+Q that can
evolve according to P or according to Q. The second form is obtained by having
a non-replicated prefix having more than one possible communication partner,
as in

(νa) (a(x)
la .x̄.s̄ | a〈b〉lb | a〈c〉lc | P) (7.3)

(where P provides b and c in some way). In that process, there should be (at
least) two activeness strategies for s̄A, one in case a connects to a〈b〉 and one
in case it is a〈c〉.

For both forms, every possible choice should be taken into account in sep-
arate components of the behavioural statement, these components being sep-
arated by ∨-connectives. Consider for example an liveness strategy π̃. (l|ρ)δ
where l could find partners ρi other than ρ. There should then be as many
π̃. (l|ρ) (l|ρi)δi, again separated by ∨-connectives. Note that l’s communication
partner is effectively a selection performed by the process.

We now give a way to accurately describe choices made by a process or its
environment over a particular run. Consider a process P =

∑
iGi

li .Pi. The
type of that process is essentially

∨
i Γi where each Γi corresponds to one term

of the sum. We identify one particular choice with the corresponding event li:

Definition 7.3.1 (Sum Guard) An event l is a sum guard in a process P if
P = C[

∑
i∈I Gi

li .Qi] and l = li for some i ∈ I.

Two distinct events l1 and l2 are contradicting sum guards if they satisfy
the above for the same context C[·], event and process sets Qi, li, but different
i ∈ I.

If the sum itself is guarded, we identify a choice with a strategy ρ (called a
selection strategy). For instance in

Q = ! a(ỹ)
la .P | a〈x̃〉l | a〈z̃〉l

′
(7.4)

where P is as in Definition 7.3.1, independent choices will be made for each
a-output, and are identified by expressions of the form (la|l). li or (la|l′). li, re-
spectively. Selections made by third-party processes are identified in a similar
way. For instance in a process a〈tf〉l, a being a Boolean channel (see Introduc-
tion), it is assumed (and described in the channel type) that the environment
will select one of t̄A and f̄A. As the reader will expect, those two choices are
respectively described as (•|l)[1] and (•|l)[2].

Choice of a communication partner is written as a pair (l|ρ). For instance
(7.3) has two selection strategies (la|lb) and (la|lc). In case l is not at top-level
selection strategies take the form π1. · · · . πn.

The complete set of choices made by a process over a particular course
can be described by a set of such selection strategies. For instance (7.4) has
four possible choice sets, all of the form { (la|l). li, (la|l′). lj } where i and j
independently range over 1 and 2.

The following two definitions clarify some concepts needed to precisely define
contradicting strategies.

84 CHAPTER 7. STRUCTURAL ANALYSIS

Definition 7.3.2 (Matching Steps) Two sequences of steps π1. · · · . πn and
π′1. · · · . π′n (where πi ∈ {(li|ρi), (li|ρi]} and π′i ∈ {(l′i|ρ′i), (l′i|ρ′i]}) match if for
all 1 ≤ i ≤ n: li = l′i and either ρi = ρ′i or (at least) one of πi and π′i is
singly-anchored.

Two sequences π̃1 and π̃2 are equivalent if any sequence π̃ matches π̃1 if and
only if it matches π̃2.

Sequences are equivalent if and only if they only differ in ρ-components of
singly-anchored steps.

In the following definition, #(l) is shorthand for the multiplicity #(G) of
the corresponding guard Gl in P .

Definition 7.3.3 (Contradicting Strategies) Let P be a process.

Two strategies ρ1 and ρ2 contradict with respect to P if there are two match-
ing sequences of steps π̃1 and π̃2 such that one of the two following condition is
satisfied:

• There are two contradicting sum guards l1 and l2 such that for both i, ρi
contains π̃i. li.

• There are two steps (l|ρ′1) and (l|ρ′2) such that #(l) 6= ω and ρ1 doesn’t
match ρ2, and, for both i, ρi contains π̃i. (l|ρ′i).

Remember (Definition 7.1.4) that a strategy ρ = (l|ρ0) (l|ρ1). ρ′ doesn’t
contain (l|ρ0) but does contain (l|ρ1). ρ′. So (assuming ρ0 and ρ1 don’t match)
ρ contradicts (l|ρ0) but not (l|ρ1), as ρ1 is l’s actual communication partner,
although the strategy was “planning” to use ρ0.

Definition 7.3.4 (Choice Set) Let P be an annotated process. A choice set
for P is a finite set of runnable liveness strategies (with or without a final step)
such that no two strategies in the set contradict each other and that includes all
sub-strategies of its elements.

In particular, no strategy in a choice set may contradict itself, for instance by
attempting to make a and ā communicate in t.a+u.ā, or using a linear channel
more than once. Note that, just like some processes may have infinitely many
liveness strategies in the presence of recursion, a process may have infinitely
many choice sets.

An annotated behavioural statement is complete if it contains ∨-terms for
every possible choice set, in other words if it is prepared to deal with any
conceivable interference.

Definition 7.3.5 (Completeness) An annotated behavioural statement Φ ∼=∨
i∈I Φi is complete with respect to P if, for every choice set ρ̃C there is ı̂ ∈ I

such that no strategy appearing in Φı̂ contradicts any in ρ̃C .

Note that this is a very different concept to channel type completeness (Def-
inition 4.2.7, page 35).

7.4. ANNOTATED LABELLED TRANSITION SYSTEM 85

7.4 Annotated Labelled Transition System

We now lift the labelled transition system on typed processes to a labelled
transition system on annotated typed processes.

When a transition on an annotated process brings an event closer to top-
level, that event is replaced by an “extended event” — See grammar on page 73.
Essentially, it is an liveness strategy where a step (lL|lR) is abbreviated to lR —
recording communication partners of prefixes that have already been consumed.
This permits knowing the history of a process, which in turn is required in
order to apply a strategy in the presence of interference. The following operator
records one step of a strategy into a process:

Definition 7.4.1 (Strategy Marking Operator)
Marking an annotated process P with an event l, written markl(P), produces the
annotated process inductively defined as follows:

• markl(l)
def
= l. l

• markl(l1. l2)
def
= l1.markl(l2)

• markl(G
l′ .P)

def
= Gmarkl(l

′).markl(P)

• markl(P1|P2)
def
= markl(P1) |markl(P2)

• markl(P1+P2)
def
= markl(P1) +markl(P2)

• markl((νa)P)
def
= (νmarkl(a)) (markl(P){markl(a)/a})

• markl(0)
def
= 0

For instance marking al.P with l1 returns al1. l.markl1(P), and then marking
that process with l2 returns al1. l2. l.markl2(markl1(P)). Note how the operator
always inserts a step just before the final one.

Based on the above marking operator we may now define the labelled tran-

sition system on annotated processes. Instead of the usual P
µ−−→ P ′ notation

we write P
µ,(ll|lr)
−−−−−−−→ P ′ where ll indicates the strategy step corresponding to

this transition (basically, which event it brings to top-level), and lr where the

communication partner is found. In a τ -reduction P
τ,(li|lo)
−−−−−−−→ P ′, li and lo

indicate respectively the input and output prefixes that are communicating.

−

a〈x̃〉l.P
a〈x̃〉,(l|l′)
−−−−−−−−→ markl′(P)

(A-Out)

−

a(ỹ)
l
.P

a(x̃),(l|l′)
−−−−−−−−→ markl′(P){x̃/̃y}

(A-Inp)

P
(νz̃:σ̃) a〈x̃〉,(lo|li)−−−−−−−−−−−−−−→ P ′ Q

a(x̃),(li|lo)
−−−−−−−−−→ Q′

P |Q
τ,(li|lo)
−−−−−−−→ (νz̃ : σ̃) (P ′ |Q′)

Q |P
τ,(li|lo)
−−−−−−−→ (νz̃ : σ̃) (Q′ |P ′) (A-Com)

86 CHAPTER 7. STRUCTURAL ANALYSIS

Rules (A-Open), (A-Rep), (A-New), (A-Par), (A-Sum) and (A-Cong)
are identical to the corresponding ones in Table 2.2 on page 16 except that they
additionally carry l components on the transition label without modification.

Using this labelled transition system, bringing an event l to top-level trans-
forms it into l. l, where l is the strategy used for that.

As event annotations in processes change, liveness strategies need to be
updated accordingly:

Definition 7.4.2 (Strategy Transition Operator) Let ρ be a strategy and
π an event pair (l1|l2) where l2 may be •.

Then ρ o π is the liveness strategy obtained as follows (the word “otherwise”
is used in the sense “if none of the previous rules apply”).

• If ρ and π contradict then ρ o π = ⊥.

• l o π def
= l otherwise.

• If one of π. ρ0 and π̄. ρ0 matches π0. ρ0 then (π0. ρ0) oπ def
= markl2(ρ0) oπ.

• ((l0|ρ0). ρ1) o π def
= (l0|ρ0 o π). (ρ2 o π) otherwise.

• π0 [q̃] o π = ⊥ if π or π̄ matches π0.

• (•|ρ0) [q̃] o π = (•|ρ0 o π) [q̃] otherwise.

• (π̃ (π)δ) o π def
= (π̃ (π)δ) o π̄ def

= (πδ) o π.

•
(
π̃ (π̃′)δ

)
o π def

= (π̃ o π)
(
(π̃′)δ o π

)
otherwise.

with the following extension of the mark operator from Definition 7.4.1:

• markl((l0|ρ0))
def
= (markl(l0)|ρ0).

• markl(π̃ (ρ0)δ)
def
= markl(π̃) (ρ0)δ

That operator is lifted to behavioural statements: Φ 7→ Φ o π is a logical
homomorphism such that

• If Φ ∼= > then Φ o π def
= >.

• If ρ o π = ⊥ then

– (sk / ε : ρ) o π def
= ⊥

– (pR / ε : ρ. φ) o π def
= >

• otherwise,

– (sk / ε : ρ) o π def
= sk / ε : (ρ o π)

– (pR / ε : ρ. φ) o π def
= pR / ε : (ρ o π). (φ o π) (where φ o π follows the

same rules as Φ o π, without the ε)

• Φ o π def
= Φ when no other rules apply.

7.4. ANNOTATED LABELLED TRANSITION SYSTEM 87

On process types, (Σ; ΦL J ΦE) o π def
= (σ; ΦL o π J ΦE).

Transition on annotated typed processes are defined similarly to those on
typed processes in Definition 3.11.4:

Definition 7.4.3 (Typed Labelled Transition System)
The transition operator Γ o µ on annotated process types modifies the type pre-
cisely as in Definition 5.1.6 on page 50.

An annotated typed process has a transition

(Γ;P)
µ−−→ (Γ′;P ′)

if there is π such that P
µ,π−−−−→ P ′ and (Γ o µ) o π = Γ′. If π = (ll|lr) and µ 6= τ

then lr must be •.

Note that σ[x̃] and σ[x̃] used in Definition 5.1.6 contain no strategies, so
Γ o µ yields a “mixed” process type that contains strategy annotations on some
statements but not all. As we will see, the weakening constraint from Definition
5.2.6 drops precisely those statements that do not have strategies.

The following lemma is easily shown by dropping all strategy annotations
on transition labels and processes and noting that it reduces to the LTS seen in
Section 3.6. The reciprocal is obtained by annotating transitions with strategies
obtained from the process, and inductively constructing the labelled transition
sequence as indicated by the rules (A-Inp) and (A-Out).

Lemma 7.4.4 (LTS Equivalence) Let (Γ;P)
µ̃−−→ (Γ′;P ′) be a transition se-

quence on annotated typed processes. Then ran(Γ;P)
µ̃−−→ ran(Γ′;P ′).

Let ran(Γ;P)
µ̃−−→ (Γ′;P ′) be a transition sequence on non-annotated typed

processes. Then there is exactly one (Γ′0;P ′0) such that (Γ;P)
µ̃−−→ (Γ′0;P ′0) and

ran(Γ′0;P ′0) = P ′.

The following lemma tells how strategy subjects evolve when the process
goes through a transition. It serves as a base to proving safety of runnability.

Lemma 7.4.5 (Subject Transitions) Let (Γ;P)
µ−−→ (Γ′;P ′) be a transition

on annotated typed process and let π be the strategy step used to prove it using
Definition 7.4.3, and let p an extended port. Then there is an extended port p′

such that, for any runnable strategy ρ such that ρ o π 6= ⊥, subP (ρ) = p implies
subP ′(ρ o π) = p′, and subP (ρ) = p̄ implies subP ′(ρ o π) = p′, and similarly for
trgk,P .

See Section A.4.1 for the proof.
The previous lemma implies (proved as part of Lemma 7.4.8) that runnable

strategies and consistent types remain runnable and consistent when the process
evolves.

The following one is in some sense a reciprocal, in that if P
µ̃−−→ Q, for any

Q-runnable strategy ρ′ there is a corresponding P -runnable strategy ρ such that
ρ o π̃ = ρ′ (where π̃ is the sequence of steps corresponding to µ̃), which in turn
guarantees that a complete type remains complete when the process evolves.

88 CHAPTER 7. STRUCTURAL ANALYSIS

Lemma 7.4.6 (Completeness of Strategies) Let (Γ;P)
µ−−→ (Γ′;P ′) be a

transition that, if it is an input, has only fresh and distinct objects. Let p′ be an
extended port. Then there is an extended port p such that:

For all runnable strategies ρ′ such that subP ′(ρ
′) = p′ there is a strategy ρ

that satisfies the guarding and top-levelness constraints of Definition 7.2.3, such
that subP (ρ) = p and ρ o π = ρ′.

The same properties hold substituting p′ with p′ and p with p̄ (i.e. the p′ 7→ p
transformation commutes with the complement operator).

See Section A.4.2 for the proof.
The weight of a strategy (over-) estimates how many transitions are required

to bring its final step to top-level and is an essential component of proving
liveness.

Definition 7.4.7 (Weight of a Strategy) The weight wt(ρ) of a strategy ρ
is defined inductively:

• wt(l)
def
= wt(•) def

= 0

• wt((•|ρ) [p])
def
= wt((l|ρ))

def
= wt((l|ρ])

def
= wt(ρ) + 1

• wt(π. ρ)
def
= wt(π) + wt(ρ)

• wt(π̃1 (π̃2)δ)
def
= wt(π̃1) + wt(π̃2δ)− wt(π̃2)

“Elementary” in the following definition refers to the image of relation ↘.
See Definition 4.3.3 on page 39.

Lemma 7.4.8 (Runnability Safety) Let (Γ;P) be an annotated typed pro-
cess that is consistent, complete and elementary.

Then for any transition (Γ;P)
µ−−→↘ (Γ′;P ′) such that Γ � Γ′, (Γ′;P ′) is

consistent, complete and elementary as well, and wt(Γ) ≤ wt(Γ′).

See Section A.4.3 for the proof.
A key component of proving correctness of an annotated process type is the

following lemma, that effectively connects process structure (liveness strategies)
and process behaviour (transition sequences).

Lemma 7.4.9 (Strategy Application) Let (Γ;P) be a consistent, complete
and elementary annotated typed process, and let ρ̃ be a choice set.

Then either (Γ;P) is immediately correct or there is a transition (Γ;P)
µ−−→

(Γ′;P ′) such that wt(Γ′) < wt(Γ).

See Section A.4.4 for the proof.
Soundness of consistency and completeness follows as a simple corollary.

Corollary 7.4.10 (Completeness and Correctness) Let (Γ;P) be a com-
plete and consistent annotated typed process. Then ran(Γ;P) satisfies definition
5.2.6 for the special case where µ̃0 is empty.

See Section A.4.5 for the proof.

7.5. ANNOTATED TYPE SYSTEM 89

7.5 Annotated Type System

We now extend various process type operators to work with annotated process
types and gradually build strategies as a process is being run through the type
system:

1. The relation ↪→, when used to reduce dependency chains, has to combine
the corresponding strategies.

2. The (E-Pre) rule constructs base strategies for the subject responsiveness
and liveness properties, remote behaviour, and adds a transition at the
beginning of all activeness strategies from the continuation.

The following definition tells how to reduce a sk/ pk′ / εp dependency chain
with {k, k′} ⊆ E :

Definition 7.5.1 (Liveness-Liveness Reduction) The ↪→ relation is modi-
fied as follows for annotated process types, in the context of a process P :

Let Ξ = (pk′ / εp : ρp) ∧ (sk / (pk′ ∧ εs) : ρs). Then

Ξ ↪→ Ξ ∧ sk / (εp ∧ εs) : ρ′s

ρ′s is obtained from ρs by replacing as many sub-strategies as possible using the
following rules, that each assume subP (π̃. l) = p̄.

π̃. (l|•). ρ 7→ π̃. (l|ρp). ρ (7.5)

π̃. (l|•). ρ 7→ π̃. (l|ρp). ρ
(
π̃. (l|•)

)
. ρ (7.6)

(•|π̃. l) [r] 7→ (ρr|π̃. l) (•|π̃. l) [r] (7.7)

To reduce chains such as sk / pk′ / εp with k ∈ E and k′ ∈ U , one needs
to convert a responsiveness strategy φ on parameter names into an liveness
strategy, applying parameter instantiation to strategies:

Definition 7.5.2 (Strategy Instantiation) Let φ be an annotated respon-
siveness strategy and s a sum of parameter ports (n or n̄). Then instantiating
φ’s port(s) s, written φ [s] is the logical homomorphism returning behavioural
statements whose atoms are liveness strategies:

• (s′k : ρ) [s] = ρ when s = s′

• φ [s] = > when no other rules apply.

Extracting an liveness strategy from a responsiveness strategy replaces the
“unspecified” communication partner “•” and parameter number “[s]” by an
actual communication partner ρp and an instantiation of its responsiveness strat-
egy φ [s].

Definition 7.5.3 (Responsiveness-Liveness Reduction) Let Ξ = pR / εp :
ρp. φ be an annotated behavioural statement for a process P and k an existential
property. Then

Ξ∧ (sk / (pR ∧ εs) : ρs) ↪→ Ξ∧
(
(sk / (pR ∧ εs) : ρs)∨ (sk / (εp ∧ εs) : ρ′s)

)
(7.8)

90 CHAPTER 7. STRUCTURAL ANALYSIS

where ρ′s is obtained from ρs by repeatedly applying the following transformation
on sub-strategies:

(•|ρ1) [s′] 7→ (•|ρ1) (ρp|ρ1). φ [s′]

The following definition tells how the above reduction rules descend into
responsiveness strategies. We use the logical homomorphism φ 7→ (ρ|•). φ that
maps pk / ε : ρ′ to pk / ε : (ρ|•). ρ′ and pR / ε : ρ′. φ to pR / ε : ((ρ|•). ρ′). φ.

Definition 7.5.4 (Responsiveness Reduction) Let Ξ be an annotated de-
pendency statement and φ a responsiveness strategy such that Ξ ∧ (ρ|•). φ ↪→
Ξ ∧ (ρ′|•). φ′ for some φ′. Then

Ξ ∧ (pR / ε : ρ. φ) ↪→ Ξ ∧ (pR / ε′ : ρ′. φ′)

where ε′ is obtained as in Definition 5.1.3.

Gathering the above definitions together we obtain the annotated counter-
part to Definition 5.1.3 on page 49. There are fewer cases because annotated
process types only contain dependency statements on the local side.

Definition 7.5.5 (Annotated Dependency Reduction) The reduction re-
lation ↪→ on annotated behavioural statements is a partial order relation satis-
fying

• The reductions as given in Definitions 7.5.1, 7.5.3 and 7.5.4.

• Φ ↪→ Φ′ implies (C[Φ] J ΦE) ↪→ (C[Φ′] J ΦE) for any local context C[·].

The above relation preserves consistency:

Lemma 7.5.6 (Reduction Preserves Consistency) Let Φ be a consistent
annotated behavioural statement for a process P , and Φ ↪→ Φ′. Then Φ′ is
consistent as well.

And so does composition:

Lemma 7.5.7 (Composition Preserves Consistency) Let Γ1, Γ2 be anno-
tated process types consistent for a process P . Then their composition Γ1 � Γ2

is consistent for P as well.

The proofs are in Section A.4.6.
When the ↪→ relation replaces some strategy ρ0 by ρ, ρ0 is a precursor of

ρ. The two points in the list below respectively model transformations done by
Definitions 7.5.1 and 7.5.3 on page 89.

Definition 7.5.8 (Strategy Precursor) A liveness strategy ρ0 is said a pre-
cursor of a strategy ρ for some process P if ρ can be obtained from ρ0 by apply-
ing zero, one or more times the following transformations, while preserving the
subP (ρ0) = subP (ρ) equality.

• replacing some • by liveness strategies,

• replacing a sub-strategy (•|ρ0) [q] by π̃. (l|ρ0). ρ′

7.5. ANNOTATED TYPE SYSTEM 91

As far as completeness is concerned, dependency reduction transforms an
incomplete type into a complete one, as long as responsiveness of every port is
available, and every strategy has a matching precursor with •-steps that can be
used for performing dependency reduction. This is formalised as follows.

Definition 7.5.9 (Pre-Completeness) Let P a process and ρ̃ be a choice set.
An annotated behavioural statement Φ is said to be pre-complete for P with
respect to ρ̃ if:

• No liveness strategy in Φ is self-contradicting.

• for any runnable liveness strategy ρ not contradicting ρ̃ and such that
subP (ρ) is a free port p, Φ contains a statement pR / ε : ρ0. φ with ρ0 being
a precursor of ρ.

• for every annotated liveness statement pk / ε : ρ2 contained in Φ, for every
runnable precursor ρ1 of ρ2, there is a precursor ρ0 of ρ1 such that Φ
contains a statement pk / ε

′ : ρ2 for some ε′.

An annotated behavioural statement
∨
i Φi is pre-complete for P if, for all

choice sets ρ̃ there is i such that Φi is pre-complete for P with respect to ρ̃.

We conjecture completeness implies pre-completeness but it is not needed
for the soundness proof.

As we will see in the annotated type system soundness proof below, if Φ1 and
Φ2 are pre-complete for two processes P1 and P2 then their composition Φ1�Φ2

is pre-complete as well. Recall that composition of behavioural statements, from
Definition 5.1.1 on page 48, does not perform a closure, so there is no similar
result for completeness, but composing and then performing the the closure of
two complete process types gives a complete type:

Lemma 7.5.10 (Closure Completes) The closure of a consistent and pre-
complete type Γ for a process P is complete for P .

The proof is in Section A.4.7
We introduce a few notations used by the annotated type system rules.
Having n(p) = a, “ξp” is ξI if p = a, and ξO if p = ā (This notation is used

in the third statement of the resulting type in (R-Pre)). That behavioural
statement is then applied the logical homomorphism ε : • that annotates every
resource with the vacuous strategy • (for instance (1A∧2A) : • = (1A : •)∧ (2A :
•)).

Strategy prefixing (l|•).Γ applies a logical homomorphism such that π. (sk/ ε :

ρ′)
def
= sk / ε : (π. ρ′) and π.Γ

def
= Γ when no other rules apply. This notation

is used in the last statements of the conclusion in (R-Pre).
Finally, Annotated Parameter Instantiation σ[x̃]l is like σ[x̃] but replacing

any (xi)k / ε (resp., (xi)k / ε) by (xi)k / ε : (•|l) [i] (resp., (xi)k / ε : (•|l)[ı]).
Regarding sums,

(∑
i xi
)
A
/ ε becomes

(∑
i xi
)
A
/ ε : (•|l) [

∑
i i]

Definition 7.5.11 (Annotated Type System) The Annotated Type System
works like the one in Section 5.3 but constructs strategies for each dependency
statement, using the rules from Table 7.2 (that only contains the rules that are
different from the ones in Table 5.1).

92 CHAPTER 7. STRUCTURAL ANALYSIS

∀i : (Σi; ΦLi J ΞEi) `′K Gi
li .Pi

ΞE �
∧
i ΞEi(∧

i Σi;
∧
k∈K sumk({pi}i,ΞE) :

∑
i li ∧

∨
i ΦLi J ΞE

)
`′K

∑
iGi

li .Pi
(R-Sum)

Γ `′K P sub(G) = p obj(G) = x̃
σ = (σ̃; ξI; ξO)(
p : σ; J pm ∧ p̄m′

)
�(

; p#(G) J
)
�

!if #(G) = ω (νbn(G))
(

(l|•).Γ/ depK(G) �
σ̄[x̃]l/ (depK(G) ∧ p̄R) �(

;
∧
k∈K propk(σ,G,m,m′) : l J

)
�

(; pR / σ[x̃] : l. (ξp : •) J)
)
`′K Gl.P

(R-Pre)

Table 7.2: Annotated Rules

The following lemma is shown by a trivial structural inductive proof, as the
behaviour of operators with respect to dependencies was not modified:

Lemma 7.5.12 (Type System Equivalence) Let (Γ;P) be a typed process
such that Γ `K P . then there is an annotated typed process (Γ′;P ′) such that
Γ′ `′K P ′ and ran(Γ′;P ′) = (Γ;P).

Given P and the typing Γ `K P , the annotated form P ′ is done by replacing
every guarded process G.P by Gl.P , where l is the event that was used in the
rule (E-Pre) for that prefix in the derivation for Γ `K P .

Lemma 7.5.13 (Annotated Type System Soundness)
Let (Γ;P) be an annotated typed process such that Γ `′K P . Then (Γ;P) is
consistent and complete.

The proof is in Section A.4.8.
The framework introduced until now does not deal with choice guarded by

a replicated prefix (as in ! a(x).(P+Q)). For instance no runnable strategy can
model the sequence

P = !u.(ā+a.s̄)
u−−→ P | (ā+a.s̄)

u−−→ P | (ā+a.s̄) | (ā+a.s̄)
τ−−→ P | s̄

We reserve such an extension for future work and for the time being will merely
sketch a proof that the ! operator (in particular the dependency reductions it
entails) preserves completeness.

Let (Γ0;P0) be an annotated typed process with Γ0 `′K P0. By induction, Γ0

is consistent and complete for P0. We show that (Γ′;Gl.P0), where #(G) = ω
and Γ′ is obtained from Γ0 following (R-Par), is consistent and complete as
well. Let Γ be the type under replication, i.e. the composition of continuation,
remote parameters and responsiveness. Remember (Definition 4.4.7 on page 43)

that ! Γ
def
= Γ� Γ� · · · � Γ with as many instances as there are ∨-terms in Γ’s

local component (multiplied by two to make sure all multiplicities are ? but we
aren’t concerned about multiplicities here). By Γ’s completeness, that number

7.6. OVERALL SOUNDNESS PROOF (PROPOSITION 5.6.4) 93

n of terms is the number of classes of possible choice sets (where two choice sets
are in the same class if the same ∨-term is complete with respect to both of
them). Conversely, to any choice set can be associated a number between 1 and
n.

Now consider a transition sequence Gl.P0 = P
µ̃−−→ P ′. P ′ can be decom-

posed into a product P | (νz̃)
(
P1 |P2 | . . . |Pm

)
where m is the number of

time the G-prefix got invoked and, for all i, P
µ̃i−−−→ P |Pi, for some µ̃i. By

LTS equivalence, that sequence µ̃i can be converted into a sequence of steps π̃i.
They are necessarily non-contradictory, as they correspond to an actual tran-
sition sequence, therefore form a choice set and have a matching ∨-term ni in
Γ.

Replace every event l occurring in processes in the sequence P
µ̃−−→ P ′ by a

pair (l, ni) where i is the process containing the event. In Γ =
∨
i Γi, similarly

replace, in each Γi, every event l (other than l itself) by the pair (l, i).
This extended framework guarantees the following property: all intermediate

processes in the P -P ′ sequence are of the form P | (νx̃) (P̂1 | P̂2 | . . . | P̂m′) (m′ is
not related in any way to n or m, as G’s continuation P0 may itself be a parallel
composition of processes), such that if an event (l or (l, i)) appears more than
once, it is in two processes P̂j and P̂k with P̂j = P̂k{x̃/̃y} where x̃ and ỹ are

distinct names appearing only in P̂j (respectively, P̂k).
As events paired with a number i all perform the same choices by construc-

tion, there are no contradictory sequences and the closure of Γ2n is complete.

7.6 Overall Soundness Proof (Proposition 5.6.4)

We may now formulate the proof of the Soundness Proposition as a corollary of
the previous lemma:

Let (Γ;P) be a (non-annotated) typed process such that Γ `K P .
Let an arbitrary transition sequence

(Γ;P) = (Γ0;P0)
µ̃0−−−→↘ (Γ′0;P ′0) (7.9)

By Subject Reduction (Prop. 5.6.3), there is Γ′′0 � Γ′0 such that Γ′′0 `K P ′0.
By the Type System Equivalence there is an annotated typed process (Γ̂′0; P̂ ′0)

such that Γ̂′0 `′K P̂ ′0 and ran(Γ̂′0; P̂ ′0) = (Γ′′0 ;P ′0).

By the annotated type system soundness, Γ̂′0 is consistent and complete for
Q′.

Let (Γ̂′0; P̂ ′0)
f−−→ (Γ̂1; P̂1)

µ̃1−−−→↘ . . . be an arbitrary transition sequence
where the µ̃i satisfy the constraints given in Definition 5.2.6 and f is constructed
as given in the completeness soundness Lemma. By that same lemma, (Γ̂n; P̂n)
is immediately correct for some n.

By LTS equivalence that transition sequence can be translated into a se-

quence on non-annotated processes (Γ′′0 ;P ′0)
f−−→ (Γ1;P1)

µ̃1−−−→↘ . . . where
(Γi;Pi) = ran(Γ̂i; P̂i) and (Γ′′i ;P ′i) = ran(Γ̂′i; P̂

′
i).

Annotation removal preserves immediate correctness so (Γn;Pn) is immedi-
ately correct as well.

As Γ′′0 � Γ′0 there is a similar transition sequence starting from (Γ′0;P ′0) with
equal processes and transitions. As weakening commutes with the transition

94 CHAPTER 7. STRUCTURAL ANALYSIS

operator the nth typed process in that sequence is a weakening of (Γn;Pn) so it
is immediately correct as well. Connecting that transition sequence with (7.9)
gives a sequence matching the requirements of Definition 5.2.6. As this works
for an arbitrary sequence we get Γ |= P .

7.7 Structural Analysis for Process-Level Prop-
erties

We conclude this section on structural analysis with a tool useful for translating
a process-level universal behavioural property into a channel-level property.

Recall that, when introducing process types (Section 3.4) we considered the
interface between a process and its environment as a special kind of channel
(let’s call that channel proc). It therefore makes sense to continue this analogy
by having process properties prock as a special case of channel properties pk.
Applying that reasoning backwards, a formal definition of a process behavioural
property (such as termination, determinism, isolation, etc) can be translated
into a channel-level property.

Definition 7.7.1 (Process-Level Property) Let ϕ be a semantic predicate
on typed processes such that ϕ(ε, (Γ;P)) is true or false for any given dependency
ε and typed process (Γ;P), and only using P through its transition network.

Then the associated goodϕ predicate is such that goodϕ(p/ ε, (Γ;P)), for an
annotated typed process (Γ;P), is true if the following holds.

Let (Γ;P)
µ−−→ (Γ′;P ′) be an arbitrary transition with sub(µ) = p. Following

Definition 7.4.3, let P
µ,(li|lo)
−−−−−−−→ P ′ be the corresponding process transition, and

P
µ,(l̂i|l̂o)
−−−−−−−→ P̂ ′ be s.t. (l̂i|l̂o) is obtained from (li|lo) by replacing • with a fresh

event lT .
Then ϕ(ε, (Γ′;P ′)) holds on the subset of the labelled transition from P ′ that

uses lT in the sequences.

Similarly, we translate an elementary rule giving prock’s dependencies in a
process P into a rule giving ak’s dependencies in a.P . For this, the elementary
rule needs to know the subject of the parent guard. We write proppk(σ,G,m,m′)
for the k-elementary rule applied on guard G whose guard has subject p. When
typing P as a sub-process of a.P we use the notation Γ `pK P , and let Γ `K P
stand for Γ `procK P .

Definition 7.7.2 (Process-Level Elementary Rules) Let ϕk be a function
mapping tuples (σ,G,m,m′) to the dependencies ε of prock. Then the corre-
sponding elementary guard rule proppk is such that

proppk(σ,G,m,m′)
def
= pk/ ϕk(σ,G,m,m′)

Let ϕk be a function mapping pairs (p̃,Ξ) to the dependencies ε of prock.
Then the corresponding elementary sum rule sumpk is such that

sumpk(p̃,Ξ)
def
= pk/ ϕk(π̃,Ξ)

Chapter 8

Applications

I will now describe a number of universal properties (briefly covered in the
Introduction, Section 1.2) one may want to enforce in processes.

8.1 Isolation

A conversation between a client and a server is isolated if no third-party is able
to obtain information about it (not even the fact that a connection has been
established). For instance the process ! a(x).(s̄|x〈t〉) replies to every request on
a with a reference to t, but also sends a signal to s every time a request is
sent, so that a third-party process listening on s is notified every time a client
connects to a, violating isolation.

The principle is simple: a process ā is isolated if the receiver at a is itself
isolated, written procI / aI. If ā is not observable then, following Definition
5.1.5, that statement reduces to procI/ > ∼= procI, i.e. the process is isolated.
Dependency reduction deals with signals sent from behind a prefix: for instance
when typing a process P = t̄ | t.Q (assume t is linear), let Q’s isolation depend
on ε. Then t̄’s type is procI/tI, and t.Q’s type is (tI/ε)∧ (procI/ t̄I). Composing
these two types reduces the chain procI/ tI/ ε to procI/ ε.

In terms of behavioural statements, we use the notation aI to mean that a is
isolated. Then, in ! a(x).P , aI will depend on isolation of every name free in P
(for example a is isolated in the forwarder ! a(x).b〈x〉 if b is isolated, i.e. aI/ bI).

A port p with a plain multiplicity “?” can’t be isolated because requests to
it may be intercepted by a third party, so the prefix rule of the type system
introduces a statement pI/⊥ for every such port.

Definition 8.1.1 (Isolation Semantics) The goodI predicate is obtained fol-

lowing Definition 7.7.1 with ϕ(ε, (Γ;P)) being true if (Γ;P)
µ−−→ with µ 6= τ

implies sub(µ)I � ε.

Note how a process with no free name can’t have non-τ -transition and is neces-
sarily isolated according to this definition.

The elementary rule is as expected:

Definition 8.1.2 (Elementary Isolation Rule) The elementary guard rule
for isolation propI is obtained following Definition 7.7.2 with ϕI(σ,G,m,m

′) =
sub(G)I.

95

96 CHAPTER 8. APPLICATIONS

With isolation just like with most universal properties, self-dependencies are
actually not harmful. For instance the live-locked process (νa) (! a.ā | ā) has
no free name and is therefore isolated. However, when typing this process,
recursion produces the statement aI / aI which reduces to aI / ⊥. Composing
with the statement procI / aI produced by the top-level ā-output we get the
type procI/⊥, i.e. the process is deemed not isolated. The delayed dependency
extension (Section 5.5) with the elementary rule ϕI(σ,G,m,m

′) = sub(G)I
+1,

would solve this particular issue as aI/aI would reduce to aI/>, keeping procI/
aI

+1 unchanged when typing ! a(ā). | ā, and reducing to procI / >, as wanted,
when binding a.

Lemma 8.1.3 (Isolation Soundness) The isolation instance of the universal
type system satisfies the conditions given in Definition 4.4.1

Proof Requirements 1 and 3 hold by construction. For number 2 we need to

show that qI/ ε � procI/ sub(G)I implies
(
((Γ;G)

µ−−→) ⇒ sub(µ)I � ε
)

where

Γ =
(
p : σ; J pm ∧ p̄m′

)
and p = sub(G).

For the left hand side, qI / ε � procI / sub(G)I implies q = proc and ε �
sub(G)I = p̄I. for the right hand side if G has a µ-transition then of course

sub(µ) = sub(G) = p, so sub(µ)I = p̄I that we just showed to be weaker or equal
to ε. 2

8.2 Determinism

A deterministic process, also called confluent in the literature for reasons that
will soon become clear, is in essence a process that does not perform choices, or
one that has no contradictory strategies, to use the terminology introduced in
Section 7.

How can we detect the presence of choice? A disjunction in the process type
is neither sufficient (a deterministic process that always provides a resource α
also always provides α∨β) nor necessary (non determinism may occur on parts
of process behaviour that is irrelevant to the other properties being studied).
Furthermore, existence of contradictory selection strategies is not a behavioural
property as it involves inspecting the process.

A solution is to use confluence as a characterisation of determinism. A

process P is confluent if, for any pair of distinct transitions P
µ1−−−→ P1 and

P
µ2−−−→ P2, there is a process Q such that both P1

µ̂2−−−→ Q and P2
µ̂1−−−→ Q

(where µ̂i is µi with possibly fewer bound names), up to renaming on bound
names. “Distinct” in that sentence means that µ1 and µ2 aren’t the same
transition with possibly different parameters, i.e. the corresponding event pairs
(li|lo) are different:

Definition 8.2.1 (Determinism) The goodD predicate is obtained following
Definition 7.7.1 with ϕ(ε, (Γ;P)) being true if

• (Γ;P)
µ−−→ with µ 6= τ implies sub(µ)D � ε, and

• for any pair of transitions (Γ;P)
µi−−−→ (Γi;Pi) (i ∈ {1, 2}) such that π1 6=

π2 are the corresponding steps, there is a pair of transitions (Γi;Pi)
µ̂ı̄−−−→

(Γ′;P ′) (where ı̄ = 3− i) such that the step corresponding to µ̂i is πi.

8.2. DETERMINISM 97

We say (Γ;P) is locally deterministic if the second condition holds.
To instantiate the type system for determinism, we detect the two sources

of choice, namely multiple communication partners, and sums.
Similarly to activeness, determinism of a branching is guaranteed by a pro-

cess type having no concurrent environment pi (Definition 6.3.4) as a third-party
process can’t attempt selecting more than one branch of the sum, thereby in-
troducing a race condition and non-determinism.

Definition 8.2.2 (Determinism Elementary Rules) The elementary deter-
minism guard rule is obtained following Definition 7.7.2 with

ϕD(σ,G,m,m′)
def
=

{
⊥ if ? ∈ {m,m′} and ω 6∈ {m,m′}
sub(G)D otherwise

The elementary determinism sum rule is obtained with

ϕD({pi}i,Ξ)
def
=

{
⊥ if Ξ has concurrent environment pi

> otherwise

See how the rule actually declares a process like P = t.T + f.F to be deter-
ministic (if it has no concurrent environment), although one may think at first

sight that it is not confluent (as P
t−−→ T and P

f−−→ F can’t be joined back).
The trick is given by the projection relation. The reader will easily check that
P ’s type is

Γ =
(
t : (), f : (); procD/ (t̄D ∧ f̄D) ∧

(
(t ∧ ΓT) ∨ (f ∧ ΓF)

)
J t̄ ∨ f̄

)
That type has two projections Γt =

(
t : (), f : (); procD/ (t̄D ∧ f̄D) J t̄

)
and

Γf =
(
t : (), f : (); procD/ (t̄D ∧ f̄D) J f̄

)
, which respectively force the process

to select the t-branch or the f -branch, i.e. both (Γt;P) and (Γf ;P) are locally
deterministic following Definition 8.2.1.

Lemma 8.2.3 (Determinism Soundness) The determinism instance satis-
fies the conditions given in Definition 4.4.1

Proof Again, requirements 1 and 3 hold by construction. The first part of
Definition 8.2.1 is shown precisely like with isolation. For the second part,

let two transitions (Γ;P)
µ−−→ΓiPi with corresponding (and distinct) liveness

strategy steps πi, and fix the statement qD/ ε we need to prove, with ε 6∼= ⊥.
First assume the πi do not share an event, they correspond to two disjoint

communicating guard pairs. For determinism to hold they must not be contra-
dictory (Definition 7.3.3), i.e. not involve two branches of the same sum. Assume
instead π1 and π2 respectively contain events l1 and l2 that are contradictory
sum guards, with subjects p1 and p2. However, as ε 6∼= ⊥, by the sum rule in
Definition 8.2.2 the sum must not have concurrent environment multiplicities,
so one of p1 and p2 (let’s say p1) is not observable in the sum, which means
the sum can’t be composed with a process containing a guard with subject p̄1,
so l1’s communication partner must be •, i.e. π1 is a labelled transition with
subject p1, but once more that contradicts p1 being non-observable (remember
that Γ is elementary, so it can’t have p̄1 ∨ p̄2 in its environment component, as
discussed after Definition 8.2.1).

98 CHAPTER 8. APPLICATIONS

Assume π1 and π2 share an event l, corresponding to some guard Gl. Let
l1 and l2 be l’s two communication partners. As π1 6= π2, l1 6= l2. By the
(Com) rule of the labelled transition system, subP (l1) = subP (l2) = subP (l).
We conclude that the subject port of l1 and l2 has plain multiplicity. As ε 6∼= ⊥,
by Definition 8.2.2 the elementary rule requires either ω ∈ {m,m′} or ? 6∈
{m,m′}. In the first case, as li have multiplicity ?, l must have multiplicity
ω, i.e. be replicated, so that it is still available to communicate with the other
li, as required. If ω 6∈ {m,m′} then ? 6∈ {m,m′}, which contradicts li having
multiplicity ?. 2

8.3 Reachability

We study in this section a property which is in some sense the negation of
activeness.

We say a port p is inactive or unreachable (written pN) in a process if it never
appears in subject position. If the ā output is unreachable then no continuation
of an a-input will ever be reached, which is useful in two ways.

Suppose a program calls a particular error handling routine whenever some-
thing goes wrong, and a reachability type system proves that routine never
actually gets called. Then we just proved that particular error condition never
happens. Another application is dead code elimination. When building a pro-
gram by assembling various components and libraries there may be parts that
are never used. If any one component is unreachable (more specifically, its com-
plement is unreachable), then it may be safely dropped from the program while
preserving useful functionality.

A dependency analysis permits dropping “islands” of inter-dependant com-
ponents: Suppose module A calls module B, i.e. an a-guarded process contains a
b̄-output. A naive dead code elimination would then fail to detect that B is un-
used, because of the b̄-output (applying dead code elimination repeatedly would
solve this particular problem, unless there are circularities. See the discussion
on circularities later on). On the other hand, the reachability elementary rule
given below then produces the statement

bN/ (āN ∨ b̄N)

which means (reading from right to left) “if the environment doesn’t invoke A
or B then B can be dropped.”

The semantic definition is straightforward:

Definition 8.3.1 (Non-Reachability) The goodN safety predicate is defined
as follows:

goodN(p/ε, (Γ;P)) is true if either ε ∼= ⊥ or (Γ;P)
µ−−→ implies sub(µ) 6= p.

A process at top-level is reachable, or “not unreachable”:

Definition 8.3.2 (Elementary Non-Reachability Rule)

propN(G, σ,m,m′)
def
= sub(G)N/⊥

8.4. TERMINATION 99

Finally, in order to consume a guard, its complement must be reachable, or,
more precisely, the continuation is unreachable if the guard’s complement is.
Since N is a universal property, this is not used by the semantics but only by
the type system’s (E-Pre) rule.

Definition 8.3.3 (Reachability Transition Dependency)
The reachability dependencies of a guard G are given by

depN(G)
def
= sub(G)N

Lemma 8.3.4 (Reachability Soundness) The reachability instance satisfies
the conditions given in Definition 4.4.1

Proof Points 1 and 3 of the definition hold by construction.
Let Γ `N,ok P . Remember (Convention 4.2.2) that, for any port p for which

Γ contains no statement pN/ ε, Γ is considered to contain an implicit statement
pN / >. As the reachability elementary rule only produces statements of the
form pN/⊥, the premise qk/ ε � ΞL of point 2 in Definition 4.4.1 really means
qN is not covered by any elementary rule, i.e. P contains no guard at top-level
with subject q and therefore P can’t have a transition with subject q. 2

8.4 Termination

Although the concept of “termination” seems intuitively simple (a process even-
tually ceases all activity), there are difficulties in defining the statement “P
(eventually) terminates” precisely. Possible definitions (from the strongest to
the weakest, and using “reduction” in the sense τ -reduction) include

• “There is a number n such that all reduction sequences from P have length
at most n”

• “All reduction sequences from P have finite length”

• “There is a number n such that, for all P =⇒ Q there is a sequence Q =⇒ A
of length at most n such that A has no reductions”

• “For all P =⇒ Q there is a sequence Q =⇒ A such that A has no reduc-
tions”

Reading the above definitions it may seem that termination is a liveness prop-
erty, which would suggest the definition “P eventually reaches a state with no
further reduction.”, where eventually is defined in Definition 5.2.2, but it turns
out this is difficult to implement as a dependency analysis. For instance the
process ! a terminates unless composed with a process with an infinite supply
of ā-outputs, and ā.Ω terminates unless the ā-prefix is consumed. These exam-
ples, and in particular the second, show that termination is not an existential
property that becomes available by putting the process to a certain state, but
rather by avoiding a certain state, which is what the universal properties are
good at.

We therefore generalise the non-reachability type system and semantics given
above, in two ways

100 CHAPTER 8. APPLICATIONS

We add a port called τ , which is the subject of τ -transition (i.e. we set

sub(τ)
def
= τ where the first τ is a transition label µ = τ and the second is a

port p = τ .
Secondly, in addition to N (never used in subject position) we define the $

property, where p$ means p is used at most a finite number of times (note that
$ looks like a slashed ω).

The semantic predicate of N is given by Definition 8.3.1, without the µ 6= τ

condition, and with sub(τ)
def
= τ .

The semantics of p$ is given by studying infinitely long transition sequences
and checking p eventually stops appearing:

Definition 8.4.1 (At Most Finite) The finiteness semantic predicate good$
is such that good$(p/ ε, (Γ;P)) holds if, having ε’s normal form be

∨
i∈I εi, for

all i ∈ I, for all numbers nq there is a number np such that all transition
sequences

(Γ;P)
µ0−−−→ µ1−−−→ · · · µn−−−→ (Γ′;P ′) (8.1)

containing np transitions µi with subject sub(µi) = p, there is a port q such that
q$ � εi and (8.1) contains at least nq transitions µi with subject sub(µi) = q.

The numbers np and nq are used to give the semantics of the p$/q$ statement:
if the environment provides at most a finite number of q-transitions then the
process provides at most a finite number of p transition, or, conversely (as in
the definition above), in order to provide an unbounded supply of p-transitions
the process requires an unbounded supply of q-transitions.

The termination resource is then the universal resource τ$.
This particular application of behavioural statements is being studied by

Bernhard Beschow for his Master’s thesis, but working on the contraposition of
dependency statement, which is more readable:

Instead of p$/ q$ (p is used at most a finite number of times if q is provided
at most a finite number of times), one can write

pω. qω (8.2)

(p being usable infinitely many times requires q being provided infinitely many
times), note the triangle is inverted.

As this “contraposed” notation can be translated unequivocally with the
regular one (swapping ∧ and ∨ as well as > and ⊥ in the dependencies, and
replacing N and $ by properties corresponding to their negation), the algebra
and semantics of that notation can be directly inferred from the one exposed in
Section 4. For instance:

(α. ε1)� (α. ε2) 7→ (¬α/ ¬ε1)� (¬α/ ¬ε2)

= ¬α/ (¬ε1 ∧ ¬ε2)

= ¬α/ ¬(ε1 ∨ ¬ε2)

7→ α. (ε1 ∨ ε2)

so those negated universal properties behave like existential properties, while
preserving safety semantics!

8.4. TERMINATION 101

Regarding weakening and equivalence, . is covariant on the right. For
instance:

α. (ε1 ∧ ε2) 7→ ¬α/ ¬(ε1 ∧ ε2)

= ¬α/ (¬ε1 ∨ ¬ε2)
∼= (¬α/ ¬ε1) ∧ (¬α/ ¬ε2)

7→ (α. ε1) ∧ (α. ε2)

Termination of a process corresponds to the statement τω.⊥— “potentially
unlimited τ -transitions requires the impossible”, the contraposition of τ$/>.

For the type system, we generalise Definition 8.3.2 to also produce τN-
statements.

Definition 8.4.2 (Elementary Non-Reachability Rule with τ)

propN(G, σ,m,m′)
def
= sub(G)N/⊥ ∧ τN/ sub(G)N

The universal type system thus instantiated is sound, by the general sound-
ness theorem, but not very useful: it never produces any p$ resource! For this
we need to modify the replication operator ! Γ to replace any statement pN/ qN
by (pN/ qN) ∧ (p$/ q$).

Let us see some examples before this section terminates (we omit multiplic-
ities, channel types and environment components in these types for readability)

• The single input a produces the statements aN / ⊥ ∧ τN / āN, that re-
spectively say that a transition with subject a may happen, and that a
τ -transition may happen if this process is composed with one producing
an ā-output.

• The replication ! a of the above process gets the type aN/ ⊥ ∧ τN/ āN ∧
a$/ ⊥ ∧ τ$/ ā$, where the last two statements respectively say that an
unbounded number of transitions with subject a may occur, and, should
an unbounded number of ā-outputs be provided, an unbounded number of
τ -reductions may become available. Note that it is important to keep the
N-resource alongside the new $-resources, as the next example shows:

• The process ! a | ā gets the following type:

(aN/⊥ ∧ τN/ āN ∧ a$/⊥ ∧ τ$/ ā$)� (āN/⊥ ∧ τN/ aN) =

aN/⊥ ∧ τN/⊥ ∧ a$/⊥ ∧ τ$/ ā$ ∧ āN/⊥ (8.3)

The interesting bits are τN/⊥ (A τ -transition may happen), obtained by
reducing τN/ āN from the left component and āN/⊥ from the right one,
and τ$/ ā$, i.e. an infinite number of τ -reduction still requires an infinite
number of ā-outputs.

• Like with other properties, recursion is not handled at all, so a.ā pro-
duces the statements τN / āN and āN / āN, which are in a sense correct
(“you will get a τ -transition if an ā-output occurs” and “you will get
an ā-output if you provide an ā-output”), but blindly applying the rules

102 CHAPTER 8. APPLICATIONS

reduces the second one to āN / ⊥, which in turn reduces the former to
τN/⊥, i.e. ”a τ -transition may occur (spontaneously)”, which if of course
incorrect, demonstrating the incompleteness of the analysis.

Reducing āN/ āN to āN/ > (typically using delays, see Section 5.5 and
other applications above) would be worse as it would make the system
unsound when using replication. Specifically, the reader can verify that,
using this simplification, ! a.ā | ā would get the same type as ! a | ā above,
including the statement τ$/ ā$.

A promising approach is to keeping the āN/ āN statement as is, with the
semantics that an ā-output may trigger another ā-output. Replication of
such statements must leave a āN on the right hand side of / as is, so that
! (āN/ āN) = ā$ / āN (“an infinite number of ā-outputs requires a finite
number of ā-outputs”), which precisely capture the behaviour of the ! a.ā-
process (as it still includes the τ$/ ā$ statement, reducing to ! (τ$/ āN:
a single ā-output may trigger infinitely many τ -transitions.

• Using the above handling of self-dependencies, processes like ! a.s.ā (see
the section on Partial Orders in [DS06]) produces the statements ! āN /
(s̄N∧ āN) = āN/(s̄N∧ āN)∧ ā$/(s̄$∧ āN). Note that the s̄N got replaced
by s̄$ as it is distinct from the resource āN on the left hand side, but āN
remained āN as in the previous example. Composing with the usual τ$/ā$
produces the statement τ$/ (s̄$ ∧ āN), i.e. the process terminates unless
an infinite number of s̄-outputs and at least one ā-output is provided.

Lemma 8.4.3 (Termination Soundness) The termination instance satisfies
the conditions given in Definition 4.4.1

Proof Soundness of the sub(G)N/⊥ statement has already been proved in the
reachability instance. Regarding soundness of τN/sub(G)N, let τN/ε � ΞL with

ε 6∼= ⊥. Then assume P
τ−−→ P ′. By the labelled transition system there must

be a port p such that P has two guards at top-level with subjects p and p̄. But
then the elementary non-reachability rule with τ would produce the statements
pN/ ⊥ ∧ τN/ p̄N � p̄N/ ⊥ ∧ τN/ pN, which reduces to the statement τN/ ⊥, a
contradiction. 2

8.5 Deadlock-Freedom

A π-calculus process is in deadlock if it has a sub-process attempting to commu-
nicate, but no communication partner ever becomes available. This definition
is slightly stronger than the common definition (for instance used in [KSS00])
where a process having a reduction is not considered deadlocked. However such
a definition considers any process P |Ω to be deadlock-free because it is always
able to perform a τ -transition thanks to Ω.

On the other hand our stronger definition may at first sight not be a very
useful definition as a deadlock-free process is either the idle process 0 or a system
with divergence, for instance for every server ! a(x).x〈v〉 must be kept busy with
an infinite supply of dummy clients in order to have deadlock-freedom. How-
ever dependency analysis, and more specifically dependencies of the deadlock-
freedom resource, contains enough information to distinguish a “true” deadlock
from one which is there by design.

8.5. DEADLOCK-FREEDOM 103

Similarly to the correctness resource used when working in a purely universal
setting (Section 4.5), we introduce a global deadlock-freedom universal resource
procdf , given by the following elementary rule:

propdf (G, σ,m,m
′) = procdf / sub(G)A (8.4)

Semantics is based on liveness (Definition 5.2.6), matching the informal def-
inition “any guard at top-level eventually finds a communication partner”.

Definition 8.5.1 (Deadlock-Freedom Semantic Predicate)
The semantic predicate for deadlock-freedom, written gooddf (proc/ ε, (Γ;P)),
holds if either ε ∼= ⊥ or, for any guard Gl at top-level in P , there is a strategy
f such that in any infinite transition sequence of the form

(Γ;P) = (Γ0;P0)
µ̃0−−−→↘ (Γ′0;P ′0)

f−−→ (Γ1;P1) · · ·

· · · µ̃i−−−→↘ (Γ′i;P
′
i)

f−−→ (Γi+1;Pi+1) · · ·

all µi performed by f satisfy depK(µi) � ε and (at least) one of the transitions
corresponds to a liveness strategy step π containing l.

Note that this definition uses both strategy functions (Definition 5.2.4) and
liveness strategy steps, and more specifically the annotated labelled transition
system (Definition 7.4.3).

For instance a replicated input ! a produces the statement procdf/ āA, which
can be read as “a term in the process is waiting for an ā-output”. The strategy
f proving this is simply doing an a-input which matches the depK(µi) � ε
requirement (both sides are precisely āA), and has a liveness strategy step (l|•).

Another example is t.ai | āo whose type is (omitting irrelevant bits) aA/ t̄A�
procdf / aA that reduces to procdf / t̄A. Although both a is a priori deadlocked
as it has no communication partner available, providing a t̄-output lets a and ā
communicating, reducing the process to 0 that is vacuously deadlock free. The
strategy proving that statement first consumes the t-prefix (permitted thanks
to the t̄A dependency) then does a τ -transition corresponding to the step (i|o).

All that we have seen so far could be obtained by verifying if the complements
of free names are active, but the current system also detects deadlocks involving
bound (or non-observable) names, the simplest example being

(νt) tl (8.5)

that is typed as (νt) procdf / t̄A = procdf / ⊥, i.e. the process is found not
deadlock-free, no matter what resources are provided. This matches the seman-
tic definition as well, as there is an l-labelled guard at top-level but the process
doesn’t provide any transition whose corresponding step contains l (indeed the
process has no transitions whatsoever), so any statement procdf / ε with ε 6∼= ⊥
would be incorrect. This example demonstrates that deadlock-freedom is not
a behavioural property because it is not preserved by bisimulation, as process
(8.5) is strongly bisimilar to the idle process 0, which is deadlock-free. It may
also be of interest to use this property as a channel-level property (refer to
Section 7.7) Soundness follows from the existential type system (and therefore
activeness) being sound:

Proposition 8.5.2 (Deadlock-Freedom Soundness) For any K including
{A,R,df}, `K is sound.

104 CHAPTER 8. APPLICATIONS

Chapter 9

Further Reading

In this section I’ll present some related research, together with, when applicable,
an encoding of their notation into mine, to help comparison.

9.1 Activeness

9.1.1 Sangiorgi: The Name Discipline of Uniform Recep-
tiveness

This [San99] is one of the first papers to address the property of activeness
(which they call “receptiveness”). It works on asynchronous monadic π-calcu-
lus with sums and matching (which we don’t handle). A linear receptive name
corresponds, in my terminology, to bi-linear names that are input active, like a
in a1

Aā
1, and an ω-receptive name is the same, but with ω multiplicity on input

and plain multiplicity on output, like aA
ω ∧ ā?.

Their (Γ; ∆) process types can then be translated into my process types by
having a name a’s local multiplicities be āΓ(a)a∆(a) for the linear type system
(with A(a) = 1 if a ∈ A and 0 otherwise), and the complement multiplicities
ā1−Γ(a)a1−∆(a) on the remote side. For the ω-receptiveness type system, we
have, for each a, ā?Γ(a)aω∆(a) on the local side, and ā?aω(1−∆(a)) on the remote
one. Sangiorgi’s plain names correspond to a?ā?, both locally and remotely
(names plain on both ports, and without activeness).

Note however that his type system is typing strong activeness, so that it does
not require dependency analysis, but also is not subsumed by mine. If however
we weaken his soundness theorem to allow a weak input transition when using a
receptive name, then my semantic definition matches his, and typability of my
type system strictly implies his.

He also provides definitions for labelled bisimilarity and barbed equivalence
that respect the concept of receptiveness. Generalising those definitions, in
particular 5.3, the one for labelled bisimilarity, would however require some
work, because if receptive names are allowed to carry receptive names, then the
x . v sub-process is not complete.

105

106 CHAPTER 9. FURTHER READING

9.1.2 Pierce, Sangiorgi: Typing and Subtyping for Mobile
Processes

This paper [PS93] studies input and output capabilities (in my terminology,
types such as >, a?, ā?, and a?ā?), and establishes a subtyping relation, which
permits typing a〈x〉 while having x’s type different from a’s parameter type
(using the subtyping relation covariantly or contravariantly depending on which
capabilities of x are used by a’s receiver).

Their types (S̃)I with I ∈ {r,w,b} are easily encoded into my notation, as
follows:

[[a : (S̃)I]]
def
=
(
a : ([[S̃]]); a?Ir ā?Iw J a?Īr ā?Īw

)
where ?Ic is ? if I ≤ c, 0 otherwise, where ?Īc is the same but using c ≤ I, and
[[S1, . . . , Sn]] is an abbreviation of [[1 : S1]], . . . , [[n : Sn]].

Their types are thus more specific (all names are plain and none can be
declared active) but, with equivalent types, their type system accepts more
processes than mine, thanks to subtyping.

9.1.3 Kobayashi, Pierce, Turner: Linearity and the π-cal-
culus

That paper [KPT99] is a specialisation of my system in that they only have
inert (multiplicity zero), linear (only one port is used, and linearly), bi-linear
(both ports are linear) and plain names (which they call ω), and no behavioural
property. They also introduce (ω; ?) channels in section 7.3 (and call them ∗).
Like in Section 9.1.2, we can encode their types as follows:

[[a : pm[T̃]]]
def
=
(
a : ([[T̃]]); a[[m]]pi ā[[m]]po J a[[m]]p̄i ā[[m]]p̄o

)
where mpc is m if c ∈ p, 0 otherwise, [[1]]

def
= 1, and [[ω]] = ?. [[T1, . . . , Tn]] is

an abbreviation of [[1 : T1]], . . . , [[n : Tn]].
They provide definitions for barbed bisimilarity, and show some confluence

results for linear channels.

9.1.4 Amadio et al.: The Receptive Distributed π-calculus

As the title suggests, this paper [ABL03] is on a distributed setting, where
they have the additional issue that, for a communication to succeed, its two
ends must be at the same site (which requires extra care when checking for
deadlocks). They also have matching, on a special set of names called keys.

So, the setting is more complex, with the trade off that their types are very
simple — all names are (in my terminology) active non-uniform ω input and
plain output and, just like [San99], they guarantee strong activeness, where no
internal action is tolerated between creation of a new name and it being ready
to use). More importantly, as a consequence of having I/O alternation and only
input activeness, they are only concerned about messaged being received — no
reply is guaranteed.

Their work is mainly interesting in the distributed setting — restricting it to
a local setting would reduce to the essentially syntactic check that all outputs
have at least one corresponding unguarded input.

9.1. ACTIVENESS 107

Also note that they concentrate on non-uniform activeness based on recur-
sion (like a in µX.a(x).(x〈t〉 | a(y).(x〈t′〉 |X)) where µX.P stands for a recursive
process), which can’t be characterised in my type system without modification,
as the closest we have is uniform activeness obtained through replication.

9.1.5 Acciai, Boreale: Responsiveness in process calculi

This paper [AB08a] addresses concerns very close to activeness (Section 6),
through two distinct type systems. Note that what they call “responsiveness”
mostly corresponds to what I call “activeness”. Again, their setting is simpler
than mine, in that it works on synchronous π, I/O alternating, doesn’t consider
combinations of active and non-active names, and does not support choice or
conditional properties, as it uses numerical levels to track dependencies. On
the other hand, they present, with their system `1, an extension for recursive
processes which is more powerful than my type system, in that it permits han-
dling unbounded recursion such as a function computing the factorial of its
parameter: ! f(n, r). if(n = 0) r〈1〉 else (νr′) (f〈n − 1, r′〉 | r′(m).r〈n ∗m〉). My
type systems reject such a process, because the recursive call would create a
dependency fR/ fR.

I conjecture that their analysis, based on the well-foundedness of parameter
domains, could be adapted to my behavioural statements by having a aR/ bR
dependency using delays (Section 5.5) typing ! a(ỹ).b〈x̃〉 with aR / bR

d where
d > 0 only if x̃ is “lighter” than ỹ. A circular dependency chain containing
only such dependencies reduces to > rather than ⊥. In the factorial example,
〈n− 1, r′〉 being “lighter” than 〈n, r〉 (because n− 1 < n), the self-dependency
becomes fR/ fR

1 and cancels out into fR/>.

Types A channel type can be responsive, ω-receptive or +-responsive. For the
last case they use a concept mostly equivalent to multiplicities, which they call
“capabilities”. Their channel types can then be encoded into mine as follows:

• Inert type: [[a : I]] =
(
a : (); J a0 ∧ ā0

)
• Responsive name: [[a : T [ρ,k]]] =

(
a : ([[1 : T]]); aA ∧ āA J a0 ∧ ā0

)
• Responsive parameter: [[1 : T [ρ,k]]] = (1 : ([[1 : T]]); āA J aA)

• ω-receptive name: [[a : T [ω,k]]] =
(
a : ([[1 : T]]); aωA ∧ ā? J a0

)
• ω-receptive parameter: [[1 : T [ω,k]]] = (1 : ([[1 : T]]); ā? J ∧) aA

ω

• +-responsive names are encoded similarly, using the following correspon-
dence: on inputs, capabilities n, s, m and p correspond respectively to
total multiplicities 0, 1, ? and ω, and on outputs, n, s, m and p corre-
spond respectively to total multiplicities 0, ?, ? and ω.

We have no way to prevent a name to be sent around (in object position),
so their ⊥ type can’t be encoded. Encoding it like I is a good approximation,
however. Also, their levels k are ignored by this encoding, because they are
implicitly contained in the behavioural statement which is inferred by the type
system. Those levels basically put an upper bound on the length of substitu-
tion chains ({β/α}{γ/β} · · ·) that can be done in activeness dependencies before

108 CHAPTER 9. FURTHER READING

reaching the >-dependency. The above encoding is not completely accurate but
corresponds to what their type system enforces.

Semantics As far as terminology is concerned, their “responsiveness” prop-
erty mostly corresponds to my “activeness” property, on processes in which
responsiveness (in my terminology) holds on all names. It is not strictly equiv-
alent because we work with a labelled transition system and define activeness
and responsiveness in terms of interactions with the environment, while they
work in a reduction setting, and define responsiveness in terms of internal ac-
tions. The correspondence can be made by comparing my activeness on a port
p ∈ {a, ā} in a process P to their responsiveness on channel a in a process like
P |Q where Q is a process interacting on p̄ (such as a〈b〉 or a(x).Q′, depending
on p).

Note that their semantic definition is also weaker as it accepts as responsive
channel a in “unbalanced” processes like (a | ā) | a or (a | ā) | ā, where the right-
most a or ā can be seen as the “testing” process Q, but may not succeed.
Also they require more than fairness on the scheduler as they would consider
s responsive in process P6 | s (where P6 is given by equation (5.4)). However
it seems that strengthening their semantic definition to reject such cases would
preserve soundness of their type system.

It should be noted also that they require all names to be “responsive” (or
ω-receptive, which is essentially the same but with another multiplicity) —
they don’t consider processes where both “plain” and “responsive” names are
involved.

Power The base form of both their type systems, described in their sections
3 and 6 are strictly subsumed by mine.

Similarly to what was presented in this paper, their first type system uses
a behavioural statement is used to check strong linear activeness or strong ω-
activeness on input ports, and activeness for linear output ports. For a process
like b̄ | b.ā, a dependency a→ b indicates the order in which linear channels are
consumed. it uses levels to check delegation, in a way that corresponds more or
less to my responsiveness dependency chains, e.g. ! a(x).b〈x〉 requires b’s level
to be smaller than a’s.

Their first system rejects a number of processes accepted by my type system,
such as “half-linear names” like t in (νt) (t̄ | t.P | t.Q), as well as processes such as
(νa) (a(x).(x̄ | b(y).ȳ)|a〈t〉) because the input on b is not immediately available.
It is however weakly bisimilar to b(y).ȳ, which is typable.

On the other hand the extension for handling recursive functions goes beyond
what my type system is capable of, as already said.

The second type system allows guarded inputs, the “half-linear names” al-
ready mentioned and replicated outputs, but rejects some recursive functions
such as the “factorial” one given previously. It is also strictly subsumed by mine
because for instance they do not allow guarded free replicated inputs.

We would like to point out that this paper answers the question they rise at
the end of Section 6.2, concerning the generalisation of dependency graphs when
inputs may be nested. They give an example of process that would require such
a generalisation: b(x).a〈x〉 | c(x).a(y).x〈y〉 | c〈b〉, where all names are assumed
responsive (in their terminology, or “bi-linear active” in mine). That process

9.1. ACTIVENESS 109

should be ruled out because it reduces to b(x).a〈x〉 | a(y).b〈y〉, where a and b
are now clearly deadlocked. Using dependency graphs on responsiveness (in
addition to activeness) rules out the first process, because it contains the cycles
bR ≤ c̄R < aR < bR and cR/ āR/ b̄R/ cR.

In conclusion, generalising their analysis of recursion on well-founded do-
mains on my type system would give a type system that is strictly more powerful
than both their systems, so that it is no longer necessary to have two separate
systems with different typing strategies.

9.1.6 Kobayashi: TyPiCal

This [Kob08] is an implementation of a lock-freedom type system [Kob02a].
Although it also performs termination and information flow analysis we are
particularly interested in its lock-freedom analysis.

Terminology We first introduce a few concepts used by TyPiCal.

Definition 9.1.1 (Deadlock) An input or output prefix in a process P is
deadlocked if it is top-level and P can’t be reduced.

An input or output prefix in a process P is deadlock-free if no reduction of
P leads to that prefix being deadlocked.

For example, if @Q : P −→ Q then all top-level actions in P are deadlocked.
In ! a(x).P |Q, all a-outputs are deadlock-free. In a.b̄ | b.ā, both a and b are
deadlocked. In P =?.a | ā, a is deadlock-free, but ā isn’t (P −→≡ ⊥.a | ā in
which ā is deadlocked, although P −→∼ a | ā in which ā is deadlock-free).

Deadlock-freedom is not a very interesting property on its own, because for
instance P |Ω is deadlock-free as it can always be reduced.

One way would be to require all processes to terminate, but a more general
approach is introduce to the following (strictly stronger) property:

Definition 9.1.2 (Livelock-freedom) An action of a process P on a port p
is livelock-free if it reaching top-level implies it can be consumed.

For example, a request to a server is livelock-free is and only if it is guaranteed
to be eventually received. In ! a(x).x̄ | a〈b〉 | b, the input at b is livelock-free,
and in P = ! a(x).b〈x〉 | ! b(x).a〈x〉 | a〈s〉 | s, the s-input is deadlock-free but not
livelock-free.

This property is related to activeness in that (although either definition
need to be adapted as we work in a labelled setting and TyPiCal in a reduction
setting) p is livelock-free if and only if the complement port p̄ is active.

Channel usages are a generalisation of multiplicities, and tell for a particular
channel how many times the input and output ports are used, and in what order.

Definition 9.1.3 (Channel Usages) The usage of a channel is an expression
given by the following grammar:

U ::= 0
∣∣ ρ

∣∣ u.U
∣∣ (U |U)

∣∣ U&U
∣∣ µρ.U

u ::= !
∣∣ ?

110 CHAPTER 9. FURTHER READING

Usage !.U does an output and then U ; Usage ?.U does an input and then
U . (U1|U2) uses according to U1 and U2 in parallel. U1&U2 uses according to
either U1 or U2 but not both. We write chanU (σ̃) for a channel of usage U and
parameters σ̃. When the context is clear, we may write just the usage for a
parameter-less channel.

For example, a.b | b̄.c̄ uses a according to ?, b according to ?|! and c accord-

ing to !. In ! a(x).x〈1〉, a has usage ∗?|! (with ∗? def
= µρ.(?.ρ)), and thus

chan∗?|!(!), b :! as a channel type (the parameter usages give the behaviour of
the channel’s input side, and here the a-input outputs on x). As a last exam-
ple, say a 6= t has usage U1 in P and U2 in Q. It then has usage U1&U2 in
(νt) (t̄ | t.P | t.Q).

Obligation and Capability levels generalise the levels used in [AB08a]:

Definition 9.1.4 (Obligation and Capability Levels) An obligation level
for an (input or output) primitive is a number (or ∞) telling when it will be
ready to fire (i.e. at top-level), while a capability level tells, if that primitive is
at top-level, when it will actually be consumed.

These levels are included into usages with the syntax u ::= !tOtC
∣∣ ?tOtC .

For example, consider the process a.b | b̄.c̄. The input a is at top-level and
thus has obligation level 0: Assuming it gets consumed at time t, b will be ready
to fire at time t + 1. The output b̄ is immediately ready, but will actually get
consumed at time t+1. b has capability 0 because no matter when it is brought
to top-level, b̄ will be ready to communicate with it. To sum up, we get the
following: a : (?0

t), b : (?t+1
0 |!0t+1), c : (!t+2

t′).
In this example, the obligation level of a port is equal to the capability level

of its complement. However this is not always the case in presence of non-
linearity: In ā.x | ā.y | a.z | x̄, a has usage (!0∞|!0∞|?0

0) — both ā have capability
zero because neither is guaranteed to succeed. Being at top-level, all a and ā
have obligation zero.

As expected, activeness, responsiveness, livelock-freedom, obligation and ca-
pability levels are tightly related:

• A term is active if and only if it has a finite obligation level and all com-
plement actions have a finite capability level.

• A term is strongly active if and only if it has a zero obligation level and
all complement actions have a zero capability level.

• A term is livelock-free if and only if it has a finite capability level.

• Input (resp., output) responsiveness corresponds to finiteness of all obli-
gation (resp., capability) levels on parameter usages.

Power There is no subsumption relation either way between my system and
the one implemented by TyPiCal.

On the one hand, the usage information is strictly more expressive than
multiplicities (which can mostly be encoded in terms of usages, with the slight
difference that usages can’t express the uniformity inherent to ω-multiplicity).
This permits for instance TyPiCal to handle locks correctly, as well as processes
like a | a.s̄ | ā | ā (where s̄ is active because a’s input and outputs are balanced,

9.1. ACTIVENESS 111

unlike for example b in b | b.s̄ | b̄ | b̄ | b̄). Multiplicities would dismiss locks as
well as that port a as plain names.

On the other hand, Events described in Section 5.4 permit an accurate anal-
ysis of processes such as

(νt)
(
t̄
∣∣ t.(! z|! a(x).z̄.x̄)

∣∣ t.! a(y).ȳ
)

which randomly picks a “slow” or a “fast” a-input. TyPical incorrectly marks
the z̄ output as unreliable (not livelock-free). Labels make z’s unreliability (or
non-activeness, or infinite obligation level) irrelevant when checking a’s respon-
siveness.

It should be noted that neither my system nor TyPiCal recognises a as input
active in that process, which suggests a future research direction.

Finally, TyPiCal does not handle recursive channel types that would be
required to analyse processes like a〈a〉 or ! a(x).x〈a〉 but we believe it would be
a rather simple extension, as was the case for my system.

9.1.7 Kobayashi: Type Systems for Concurrent Programs

This paper [Kob02b] covers most of the theoretical basis (including channel us-
ages, capability and obligation levels) for TyPiCal, in the form of a type system
being described incrementally, similarly to the present paper. The analysis given
in Section 9.1.6 therefore remains mostly valid, except that [Kob02b] works on
polyadic π. It also covers tail recursive functions (similarly to [AB08a]), and a
number of interesting extensions such as session types and termination analysis.

Their types don’t seem to describe a separation of input and output protocols
in channel types.

My strategy of using explicit behavioural statements instead of obligation
(and capability) levels has the advantage of describing a process as an open
system, in that it describes how the process would react when composed with
an arbitrary other process. For instance, if P = a.b, then seeing P as a closed
system implies that b will never be available. Describing it with a behavioural
statement makes explicit in the type that b becomes active if ā is.

9.1.8 Kobayashi and Sangiorgi: A Hybrid Type System
for Lock-Freedom of Mobile Processes

This paper [KS08] combines (arbitrary) deadlock, termination and confluence
type systems on sub-processes of the one being analysed (thereby permitting
analysis of globally divergent processes). This work uses typed transitions rem-
iniscent of mine, and their “robust” properties are analogous to my semantics
permitting arbitrary transition sequences µ̃i. Channel usages are like those
used by Kobayashi in previous works [Kob02a, Kob08], with the same expres-
sive power and limitations. The typing rules discard those processes that rely on
the environment in order to fulfil their obligation. Hence well-typed processes
are lock-free without making any assumption on the environment. Advanced
termination type systems such as those proposed by Deng and Sangiorgi [DS06]
permit this hybrid system to deal with complex recursive functions like tree
traversal.

112 CHAPTER 9. FURTHER READING

9.2 Other Properties

9.2.1 Deng and Sangiorgi: Ensuring Termination by Ty-
pability

This paper [DS06] proposes a series of increasingly powerful type systems for
characterising termination. The definition of termination (all reduction se-
quences are of finite length) coincides with τ$ / ε where ε � p$ for some p.
The first system is quite basic and worked by attaching levels to channels, and
I believe it is equivalent to the one we discussed in Section 8.4. Much like
level-based lock-freedom type systems, levels correspond to the length of depen-
dency chains. Unlike dependency analysis, levels must be provided as part of
the channel types.

They also provide a direct way of computing an upper bound on the number
of reduction a terminating process may do, which is something my termination
instance can’t do as it works on universal properties. (In contrast with the
existential type system, whose annotated form produces strategies that have a
well-defined weight).

The paper then proceeds to typing recursive processes, much like [AB08a]
does for activeness, by recognising recursive calls carrying a “lighter” parameter.
Again, it seems recognising this sort of well-founded recursion could be added
to the generic type system, by choosing the delay accordingly (Section 5.5).

In section 5 they introduce rules for dealing with infinite recursion that is
limited by another input, as in ! a.b.ā, which can effectively be described as
τ$ / āN ∨ b̄$ / (i.e. it terminates unless provided with an infinite supply of
b̄-outputs).

9.2.2 On Determinacy and Nondeterminacy in Concur-
rent Programming

Nestmann’s PhD thesis [Nes96] contains a detailed description of choice and de-
terminism, a type system detecting non-determinism, and studies the encoding
of sums P+Q.

9.3 Generic Type Systems

9.3.1 Acciai and Boreale: Spatial and Behavioral Types
in the Pi-Calculus

This Type System [AB08b] combines ideas from the Kobayashi’s Generic Type
System (in that types abstract the behaviour of processes) and Spatial Logic,
by performing model checking with spatial formulæ on the types rather than
on the processes. This results in a generic type system able to characterise
liveness properties such as activeness, and supports choice, both through the
process constructor + and logical connective ∨. It is parametrised by “shallow”
(without direct access to the object parts of transitions) logical formulæ, that it
checks automatically using a model-checking approach. Being based on model
checking, it suffers from the same limitations as the previous work, in terms
of computation complexity, and difficulty of expressing conditional properties

9.3. GENERIC TYPE SYSTEMS 113

or responsiveness (by “shallowness” of the logic — note once more that what
the authors call responsiveness corresponds to what we call activeness). On
the other hand, restricting it to shallow logic formulæ allows working on the
abstracted process, making it more efficient than a fully general model checker.
Like the previous work and unlike the Generic Type System, it doesn’t require
proving soundness of a consistency predicate, as it is based on a fixed formula
language.

9.3.2 Igarashi and Kobayashi: A generic type system for
the Pi-calculus

This [IK01] is a framework for type-checking various safety properties such as
deadlock-freedom or race-freedom. Types are abstract processes — a simplified
form of the target process — and soundness theorems establishing that if the
abstraction is well-behaved then so is the actual process. It is particularly use-
ful for safety properties as subject reduction is proved once and for all, so that
instances of the generic type system only need to show that if the abstract pro-
cess is well-behaved, the target process is not immediately breaking the desired
property. With liveness properties, showing the validity of a dependency anal-
ysis done on the abstract process and the correspondence between activeness in
the abstract process and the actual one would likely require the same amount
of work as starting from scratch.

Types use “+” in essentially the same sense as we do, and “&” corresponds
precisely to ∨ as used in this thesis. The paper includes as examples of instan-
tiations, simple arity-mismatch checking system, race-freedom and deadlock-
freedom type systems.

The idea behind their type system and mine is rather different as well. In
a word, Igarashi and Kobayashi’s system constructs an abstract process that is
really a very detailed type, and then custom rules work on the types (and not at
the process) and return ”yes” or ”no”. My system, in contrast, has elementary
rules that look at elements of a process and provides building blocks of types,
that are then assembled by the type system. It is still too early, however, to
decide if one approach is best or if they are simply complementary.

9.3.3 Caires and Vieira: Spatial Logic Model Checker

This paper [Cai04] presents a model checker able to check processes for a wide
range of properties, expressed by expressions written in a spatial logic, and is
sound and complete as long as (the state spaces of) the processes are bounded.
Using their logic, activeness of a port p can be written νX.(〈p〉∨23X). Respon-
siveness of a port is a property that depends on the channel type, but it should
be possible to give an inductive translation of channel types to modal formulæ
corresponding to responsiveness on it. The selection connective ∨ is also present
in their logic, with the same meaning. There is however no direct equivalent to
my / connective, so conditional properties need to be encoded by modifying
the activeness formulæ, which may become very complex for statements such
as (6.17) that include dependencies on responsiveness. Both its strengths and
limitation come from it being purely a model checker. On the one hand, it takes
logical formulæ in input rather than constructing them automatically, it has a
very large complexity due to exhaustively exploring the state space, and doesn’t

114 CHAPTER 9. FURTHER READING

terminate when given unbounded processes (unlike a type system such as mine,
that is polynomial in the size of the process, and always terminates). On the
other hand it is complete for bounded processes, and able to recognise activeness
in cases deemed unsafe by my type system, due to over-approximation.

9.4 Structural Analysis

9.4.1 Bodei, Degano et al: Control Flow Analysis for the
π-calculus

Related to structural analysis (Section 7), the theory developed in this paper
[BDNN98] is focused on the following problem: P being a (monadic — but the
theory seems straightforward to generalise to the polyadic setting) π-calculus
process, what is the set of names that can be carried by a given channel, while
the process evolves? As the problem is not decidable, the authors construct an
over-approximation. Note that the “semantic definition” |=me is really a syntax-
directed type system, as exposed in Section 4, while the actual semantics that
relation guarantees is given by Subject Reduction (Theorem 3.10).

They avoid the problem of α-renaming by inserting channel and binder mark-
ers into the process syntax, then referring to channels by channel markers rather
than names, rather similarly to “events” l. They do not require distinct chan-
nels to have distinct names, however, avoiding the need for “extended names” x
(and it is acceptable precisely because they construct an over-approximation).
The more distinct channels are used in the process annotation, the more precise
the analysis will be.

This question — what is the set of names that can be carried by a given
channel — is relevant to my research in two ways.

First, for a liveness property pk to be available in a process, there needs
to be a guard G somewhere that provides a property qk where either q = p
or q is bound by an input prefix somewhere, and q gets instantiated to p by
a communication partner of that prefix. My liveness type system handles this
with channel types and parameter instantiations, which is one of its fundamental
limitations. An approach based on computing what names may be instantiated
to what channels might provide a higher degree of accuracy, although we’d
require an under-approximation for liveness to hold.

Secondly, completeness of an annotated type, that is when dealing with in-
terference, relies on knowing all communication partners of a given guard G.
For instance in P = a〈t〉.t.A |x(y).y | . . ., if some liveness resource γ is avail-
able in A, proving it is available in P as well requires us to find all potential
communication partners of x〈t〉 and check they enable an output at their pa-
rameter. Finding all x-inputs in a process amounts to finding all names carried
by other inputs, for instance if the process contains a(y).y(z)

l
. . . ., then l be-

comes an x-input if and only if a carries an x. For this part we do need an
over-approximation (but we need more than just a set of names, we need to
unambiguously distinguish all potential communication partners, so some form
of liveness strategy seems unavoidable).

As a chief application of the type system, [BDNN98] proposes an application
to information flow (if the type system concludes that, in P , no “low channel”
ever carries a “high parameter”, one can conclude the process will not leak secret

9.4. STRUCTURAL ANALYSIS 115

information).

116 CHAPTER 9. FURTHER READING

Chapter 10

Conclusion

In this thesis, I proposed dependency analysis as a generic way to describe and
analyse the behaviour of a π-calculus process. Channel and process types are
equipped for integrating arbitrary behavioural resources, as well as semantics for
existential and universal properties. A generic type system, given elementary
rules characterising the essence of the desired properties, constructs process
types with detailed behavioural statements summarising what properties are
guaranteed by the process, and — through dependency statements — what fur-
ther properties it provides given some help (in the form of existential resources)
by the environment.

One strong point of dependency analysis is a high expressiveness — not only
it permits encoding the types of all papers we considered (except for non trivial
channel usages), it allows for a more detailed specification of the protocol being
used on a channel and capabilities being transmitted.

Behavioural statements in process types accurately specify the interface of
the process with the environment, so that having typed P and Q independently,
their types can be composed to obtain P |Q’s type (unlike most works we sur-
veyed, that treat processes as a whole and in a reduction-based setting and thus
can’t directly predict the effects of such a composition without type checking
the composition itself). Similarly, the reliability built into liveness semantics
(Section 5.2) means the properties are preserved by composition, which is not
always the case with such reduction-based settings.

Where do we stand now regarding our original goal, producing a general
framework for verifying encodings?

A typical proof of equivalence of two calculi C and C′ would proceed as
follows:

1. Use a simple type systems for C verifying that processes do not mismatch
channel types, essentially the universal type system (Table 4.1) letting all
channels be plain (a?∧ ā?) and setting K = ∅, but possibly extended with
primitive types such as Integers or more complex objects.

2. Write a process encoding [[·]] : C → C′

3. Write a mapping of C-channel types to C′-channel types. For instance,
when encoding π-calculus with Booleans to the basic π-calculus, this map-
ping would replace the primitive Bool to Bool as given by (6.12).

117

118 CHAPTER 10. CONCLUSION

Special channels introduced by the encoding (like u in Section 1.3) must
typically be declared with various behavioural properties for the encoding
to be fully abstract.

4. A typability proof must show that if a C-process P is simply typed then so
is its encoding [[P]]. Then the generic soundness theorems apply, and all
encoded processes are guaranteed to satisfy the properties chosen in the
previous step.

5. The fully abstract theorem must then show that if two C-processes P1 and
P2 are barbed congruent if and only if their encodings [[P1]] and [[P2]] are
barbed congruent with respect to typable C′-environments.

6. The same procedure must be repeated in the C′ → C direction, to complete
the equivalence proof.

Step 5 can be rather difficult in the [[P1]] ∼= [[P2]] ⇒ P1
∼= P2 direction,

because not all typable environments are encodings of C-processes. One proof
strategy would be, by building on the semantic definitions of the chosen be-
havioural properties, to show that all typable processes are bisimilar to some
encoded process, because they must only use encoded channel types when in-
teracting with the [[Pi]]. This might not always be possible, if C′ is sufficiently
rich or the encoding sufficiently elaborate.

Another research direction is therefore to design a labelled bisimulation re-
lation to work on typed C′-processes, that respects the semantic properties by
only considering transitions that could be triggered by well-typed processes.
The transition operator o already guarantees this for simple types (i.e. it re-
spects channel types and multiplicities) but currently offers no such guarantees
for behavioural properties, and in particular a good labelled bisimulation should
respond identically to repeated (but identical) requests of encoded processes on
channels that are declared deterministic in the process type.

Regarding the limitations of this generic type system, I chose to focus on
choice itself, leaving out features like recursivity [AB08a, DS06] or subtyping
[PS93], and complex channel usages such as locks [Kob02b, Kob08, Kob02a],
which have been well explored before in a choice-less context. With some work,
these could probably be integrated into the generic type system for improved
accuracy. Of course, such an inclusion would in a single step benefit all instances,
described in this thesis or elsewhere, which is what makes generic type systems
so appealing.

Note however that integrating recursivity to work well with encoded values
would be non-trivial because nothing in an encoded Integer type prevents num-
bers to be infinite (which may or may not be permitted in the source calculus),
and yet it may be desirable in some contexts to permit unbounded numbers.
For instance

!Geom(zero, succ).(zero + succ〈Geom〉) (10.1)

is a random number obeying a geometric distribution, safe for use with arith-
metic operators. Moreover, an addition operator working by induction on the
first parameter would be responsive even if the second parameter is infinite.
In other words, a treatment of responsiveness with recursion would have to in-
clude the concept of finiteness “B” (like Bounded, as F was already taken by

119

Functional, but we really mean finite) in addition to activeness and responsive-
ness. The following example encodes the circuit “r = a + b” and shows that r
is responsive even if b is infinite, but r is finite only if both a and b are finite.

rωA ∧ rR/ (aAB ∧ bAR) ∧ rB/ (aAB ∧ bAB) `
! r(zs).(νt) (t〈a〉 | ! t(x).x(νz′s′).(z′.b〈zs〉+ s′(x′).t〈x′〉))

Note that my current type system (with the “delayed dependencies” extension)
recognises that Geom is responsive, but due to t calling itself, just produces
rR/⊥.

One useful extension improving the practicality of this work is known as type
reconstruction in the literature (see f.i. [IK00]). In the current form of the type
system, the programmer is required to provide channel types for all channels
(both free and bound), although types for some channels can in some cases be
inferred from the process. For instance, for bound names that never appear in
object position of observable outputs, all receivers and senders are known, and
the process types of their continuations could be used to construct the channel
type.

Another future work direction is doing an actual software implementation. I
did a Java-based implementation some time ago, prior to inclusion of branching
and selection in the types. Choice makes some operations such as closure and
detection of∼=-equivalence more difficult but there doesn’t seem to be any serious
difficulties. The closure uniqueness proof, Section A.1.5, gives hints for an
implementation that doesn’t rely on (inefficient) fixed point algorithms, and the
proof of the normal form lemmas (Section A.1.6) suggests a way to simplify and
compare behavioural statements.

120 CHAPTER 10. CONCLUSION

Bibliography

[AB08a] L. Acciai and M. Boreale. Responsiveness in process calculi. Theo-
retical Computer Science, 409(1):59–93, 2008.

[AB08b] L. Acciai and M. Boreale. Spatial and Behavioral Types in the Pi-
Calculus. In Proceedings of CONCUR’08, volume 5201 of LNCS,
pages 372–386. Springer, 2008.

[ABL03] R. M. Amadio, G. Boudol and C. Lhoussaine. The receptive dis-
tributed π-calculus. ACM Transactions on Programming Languages
and Systems, 25(5):549–577, 2003.

[AG97] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
the spi calculus. In CCS ’97: Proceedings of the 4th ACM conference
on Computer and communications security, pages 36–47, New York,
NY, USA, 1997. ACM.

[BDNN98] C. Bodei, P. Degano, F. Nielson and H. R. Nielson. Control Flow
Analysis for the pi-calculus. In CONCUR ’98: Proceedings of the
9th International Conference on Concurrency Theory, pages 84–98,
London, UK, 1998. Springer-Verlag.

[BPV05] M. Baldamus, J. Parrow and B. Victor. A Fully Abstract Encoding
of the π-Calculus with Data Terms. In Proceedings of ICALP’05,
pages 1202–1213. Springer-Verlag, 2005.

[Cai04] L. Caires. Behavioral and Spatial Observations in a Logic for the
π-Calculus. In Proceedings of FOSSACS’04, volume 2987 of LNCS.
Springer, 2004.

[CC04] D. Cacciagrano and F. Corradini. Fairness in the pi-calculus. Tech-
nical Report, Dipartimenti di Informatica, Università di L’Aquila,
2004.

[CG90] N. Carriero and D. Gelernter. How to write parallel programs: a
first course. MIT Press, Cambridge, MA, USA, 1990.

[DS06] Y. Deng and D. Sangiorgi. Ensuring termination by typability. In-
formation and Computation, 204(7):1045–1082, 2006.

[GNR04] M. Gamboni, U. Nestmann and A. Ravara. What is TyCO, After
All? Master’s thesis, École Polytechnique Fédérale de Lausanne,
2004.

121

122 BIBLIOGRAPHY

[Hen07] M. Hennessy. A Distributed Pi-Calculus. Cambridge University
Press, New York, NY, USA, 2007.

[IK00] A. Igarashi and N. Kobayashi. Type reconstruction for linear
π-calculus with I/O subtyping. Information and Computation,
161(1):1–44, 2000.

[IK01] A. Igarashi and N. Kobayashi. A generic type system for the Pi-
calculus. ACM SIGPLAN Notices, 36(3):128–141, 2001.

[Kob02a] N. Kobayashi. A type system for lock-free processes. Information
and Computation, 177(2):122–159, 2002.

[Kob02b] N. Kobayashi. Type systems for concurrent programs. In Proceedings
of UNU/IIST 10th Anniversary Colloquium, volume 2757 of LNCS,
pages 439–453. Springer, 2002.

[Kob08] N. Kobayashi. TyPiCal 1.6.2, 2008.

[KPT99] N. Kobayashi, B. C. Pierce and D. N. Turner. Linearity and the
Pi-Calculus. ACM Transactions on Programming Languages and
Systems, 21(5):914–947, 1999.

[KS08] N. Kobayashi and D. Sangiorgi. A Hybrid Type System for Lock-
Freedom of Mobile Processes. In Proceedings of CAV’08, volume
5123 of LNCS, pages 80–93. Springer, 2008.

[KSS00] N. Kobayashi, S. Saito and E. Sumii. An Implicitly-Typed Deadlock-
Free Process Calculus. In Proceedings of CONCUR’00, volume 1877,
pages 489–503, 2000.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer Verlag,
1980.

[Mil93] R. Milner. The Polyadic π-Calculus: A Tutorial. In Logic and Alge-
bra of Specification, Proceedings of the International NATO Summer
School (Marktoberdorf, Germany, 1991), volume 94 of NATO ASI
Series F. Springer, 1993.

[MPW92] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes,
I and II. Information and Computation, 100(1):1–77, 1992.

[Nes96] U. Nestmann. On Determinacy and Nondeterminacy in Concurrent
Programming. PhD thesis, Universität Erlangen Nürnberg, 1996.

[Nes00] U. Nestmann. What Is a ‘Good’ Encoding of Guarded Choice? In-
formation and Computation, 156:287–319, 2000. An extended ab-
stract appeared in the Proceedings of EXPRESS ’97, volume 7 of
ENTCS.

[Par01] J. Parrow. An Introduction to the π-Calculus. In P. Bergstra and
Smolka, eds, Handbook of Process Algebra, pages 479–543. Elsevier,
2001.

BIBLIOGRAPHY 123

[Par08] J. Parrow. Expressiveness of Process Algebras. Electron. Notes
Theor. Comput. Sci., 209:173–186, 2008.

[PS93] B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile
Processes. In Proceedings of LICS’93, pages 376–385. IEEE Com-
puter Society, 1993.

[PT00] B. C. Pierce and D. N. Turner. Pict: A Programming Language
Based on the Pi-Calculus. In G. Plotkin, C. Stirling and M. Tofte,
eds, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

[San93] D. Sangiorgi. From pi-Calculus to Higher-Order pi-Calculus - and
Back. In TAPSOFT ’93: Proceedings of the International Joint
Conference CAAP/FASE on Theory and Practice of Software De-
velopment, pages 151–166, London, UK, 1993. Springer-Verlag.

[San98] D. Sangiorgi. An Interpretation of Typed Objects into Typed π-
Calculus. Information and Computation, 143(1):34–73, 1998. Earlier
version published as Rapport de Recherche RR-3000, INRIA Sophia-
Antipolis, August 1996, and presented at FOOL 3.

[San99] D. Sangiorgi. The Name Discipline of Uniform Receptiveness. The-
oretical Computer Science, 221(1–2):457–493, 1999.

[SW01] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

[Vas94] V. T. Vasconcelos. Typed Concurrent Objects. In 8th European
Conference on Object-Oriented Programming, volume 821 of Lecture
Notes in Computer Science, pages 100–117. Springer-Verlag, July
1994.

[YBH04] N. Yoshida, M. Berger and K. Honda. Strong normalisation in the
π-calculus. Information and Computation, 191(2):145–202, 2004.

124 BIBLIOGRAPHY

Appendix A

Proofs

We prove in this section a number of important properties of the type system,
such as subject reduction, type safety and type soundness.

A.1 Proofs for Sections 3, 4 and 5

A.1.1 Auxiliary Lemmas

All operators used in behavioural statements are idempotent and distributive,
which lets us prove the following property:

Lemma A.1.1 (Nesting Elimination Lemma) Let C[·] and C ′[·] be two be-
havioural contexts and ε a behavioural statement. Then

C[C ′[C[ε]]] ∼= C[C ′[ε]]

Proof
First consider the case C[·] = ε0 ∨ [·].
Repeatedly using the laws ε0∨(ε1∧ε2) ∼= (ε0∨ε1)∧(ε0∨ε2) and ε0∨(ε1∨ε2) ∼=

(ε0 ∨ ε1) ∨ (ε0 ∨ ε2), we transform C[C ′[C[ε]]] to C ′0[ε0 ∨ C[ε]], where C ′0[] is
C ′[] with ε0∨ prefixing every individual term except the hole. Substituting
C[·] with its definition we get C ′0[ε0 ∨ ε0 ∨ ε] which is ∼=-equivalent to C ′0[ε0 ∨ ε].
Reversing the “ε0-injection” done above, we obtain ε0 ∨ C ′[ε], i.e. C[C ′[ε]].

The proof for C[·] = ε0 ∧ [·] is identical but using ∧ instead of ∨.
Any behavioural context can be written as a composition of contexts of

the above two forms, so let C[·] = C1[C2[· · ·Cn[·] · · ·]]. The statement being
considered is

C1[C2[· · ·Cn[C ′[C1[C2[· · ·Cn[ε] · · ·]]]] · · ·]]
Using the above base case it can be reduced to

C1[C2[· · ·Cn[C ′[C2[· · ·Cn[ε] · · ·]]] · · ·]]

As ∼= is a congruence, the inner C2[·] can similarly be dropped, and so can all
the others. 2

Lemma A.1.2 (Weakening Conserves Structure) Let ∆ = ∆1 ∧∆2, and
∆′ � ∆. Then ∆′ ∼= ∆′1 ∧∆′2 with ∆′i � ∆i for both i. The same property holds
for ∨ instead of ∧ or � instead of �.

125

126 APPENDIX A. PROOFS

Proof Rule η1 ∧ η2 � η1 can be written η1 ∧ η2 � η1 ∧> (and note that η2 � >)
and η1 � η1 ∨ η2 can be written η1 ∨ ⊥ � η1 ∨ η2.

The remaining rules in Definition 3.6.1 either are already in the required
form, or actually define ∼=, in which case one can simply set ∆′i = ∆i for both
i. 2 The following lemma states that
a labelled transition can be split into two phases, one that may perform up to
two branchings (by replacing a sum by one of its elements) and the second does
the actual transition. This makes it possible to split proofs similarly. Note that
this lemma only holds because our process calculus doesn’t include replicated
sums such as ! (a+b) (but accepts the strongly bisimilar ! a|! b).

Lemma A.1.3 (Branching Transition) Let P
µ−−→ P ′ be a transition.

Then there is a process P̂ such that

• P̂ is obtained from P by replacing at most two sums
∑
i∈I Gi.Pi by Gı̂.Pı̂

for some ı̂ ∈ I.

• P̂ µ−−→ P ′, without using the (Sum) rule from the labelled transition sys-
tem.

The following lemma, whose proof is omitted, will be helpful in many proofs:

Lemma A.1.4 (Structural Lemma) Let P be a process and P
µ−−→ P ′ where

sub(µ) = p and (Sum) was not used. Then P is of the following form:

P ≡ (νz̃)
(
Q
∣∣ G.R)

where n(p) 6∈ z̃ and sub(G) = p, and, if µ is an output, obj(G) ∩ (bn(G) ∪ z̃) =
bn(µ). For P ′, either (when #(G) = 1)

P ′ ≡ (νz̃ \ bn(µ))
(
Q
∣∣ R{obj(µ)/obj(G)}

)
or (when #(G) = ω)

P ′ ≡ (νz̃ \ bn(µ))
(
Q
∣∣ G.R ∣∣ R{obj(µ)/obj(G)}

)
.

Now let instead P
τ−−→ P ′, still not using (Sum). Then

P ≡ (νz̃)
(
Q
∣∣ G.R ∣∣ G′.R′)

where there is a name a s.t. sub(G) = a and sub(G′) = ā. Similarly to µ 6= τ
there are four cases for P ′, depending on #(G) and #(G′), but we only show
the one where both are 1:

P ′ ≡ (νz̃ ∪ bn(G′))
(
Q
∣∣ (R{obj(G′)/obj(G)}

) ∣∣ R′) .
Finally, the following lemma gives a few useful properties of process type

operators:

Lemma A.1.5 Let Γ1 and Γ2 be process types, m1 and m2 multiplicities.

• (m1 +m2)−m2 � m1.

A.1. PROOFS FOR SECTIONS 3, 4 AND 5 127

• If Γ1 � Γ2 is well defined then (Γ1 � Γ2) \ Γ2 � Γ1

• If Γ1 � Γ2 is well defined and Γ′1 � Γ1 then Γ′1 � Γ2 is also well defined
and Γ′1 � Γ2 � Γ1 � Γ2

• Let Γ ` P , Γ′ ` P ′ with Γ′ � Γ. If Γ2 ` C[P], using Γ ` P in
the derivation, then there is Γ2 with Γ′2 ` C[P ′] (using Γ′ ` P ′ in the
derivation) and Γ′2 � Γ2.

A.1.2 Properties of ∼= (Lemma 3.6.2)

Up to ∼=, ⊥ is neutral for ∨ and absorbent for ∧. > is absorbent for
∨ and neutral for ∧.

We show ⊥ is neutral for ∨ (> being neutral for ∧ is similar).
By η1 � η1 ∨ η2 we have η ∨ ⊥ � η.
By ⊥ � η, η ∨ ⊥ � η ∨ η which (as ∨ is idempotent) implies η ∨ ⊥ � η.
We now show > is absorbent for ∨:
By η1 � η1 ∨ η2, η ∨ > � >
By η � >, η ∨ > � >.

A.1.3 Composition Properties (Lemma 3.9.4)

The + operator on multiplicities is commutative as can be seen in Definition
3.8.1. It has a neutral element 0 as stated in the same definition, and is associa-
tive (one can easily see that a1 + (a2 + a3) is ? if two or more ai are non-zero,
and is ai if both aj with j 6= i are zero, so rotating the ai preserves the result).

The behavioural statement operators ∨ and ∧ are commutative up to ∼=
(Definition 3.6.1).

Commutativity of behavioural statement composition The ∆1�∆2
∼=

∆2�∆1 equivalence is proven by structural induction on ∆1 and ∆2. One of the
cases is: Assume Θi �∆2

∼= ∆2 �Θi for both i ∈ {1, 2}. Then (Θ1 ∧Θ2)�∆2

is ∼= to (� being a logical homomorphism) (Θ1 �∆2) ∧ (Θ2 �∆2) whish is ∼=
to (by induction hypothesis) (∆2 � Θ1) ∧ (∆2 � Θ2), ∼= to (� being a logical
homomorphism) ∆2�(Θ1∧Θ2). Other “step” cases are similar. The base cases
enumerated in Definition 5.1.1 follow from +, ∧ and ∨ being commutative.

Associativity of behavioural statement composition ∆1� (∆2�∆3) ∼=
(∆1�∆2)�∆3) is again proven by structural induction on all three statements.
The step cases are much similar to the above, exploiting � being a logical
homomorphism and the distributivity rules of ∼= to decompose the product,
apply the induction hypothesis and recompose the resulting terms. For the
induction base case, assume all three ∆i are of the form pm and γ / ε. Note
that if they are not all dependency statements of the same resource γ, or all
multiplicities of the same port p, rule 4 of Definition 5.1.1 will apply and return>
no matter in which order the ∆i are composed. Otherwise, the three remaining
base cases corresponding to the first three points of Definition 5.1.1 satisfy
associativity as a consequence of +, ∨ and ∧ being associative up to ∼=.

As a corollary of Lemma 5.1.2, > is a neutral element of � when Convention
4.2.2 applies.

128 APPENDIX A. PROOFS

We may now lift the above results to prove the Lemma itself.

Proof of the Lemma By commutativity of ∧ and � on behavioural state-
ments,

(Σ1 ∧ Σ2 ; ΞL1 � ΞL2 J (ΞE1 \ ΞL2) ∧ (ΞE2 \ ΞL1)) ∼=
(Σ2 ∧ Σ1 ; ΞL2 � ΞL1 J (ΞE2 \ ΞL1) ∧ (ΞE1 \ ΞL2)) (A.1)

As closure and removal of non-observable dependencies commute with ∼=
(Lemma 3.11.5), � on process types is commutative.

(∅;> J >) is a neutral element: Let ∆ be any behavioural statement. Then
∆ \ > = ∆, and > \∆ = >, both consequences of point 4 in Definition 3.9.1.
Then:

(Σ; ΞL J ΞE)� (∅;> J >) = (Σ ∧∅ ; ΞL �> J (ΞE \ >) ∧ (> \ ΞL))

= (Σ ∪∅; ΞL J ΞE ∧ >)
∼= (Σ; ΞL J ΞE)

Again, the remaining points of Definition 4.2.6 commute with ∼= so we are
done.

Regarding associativity, let Γi = (Σi; ΞLi J ΞEi) for i ∈ {1, 2, 3}, Γ = (Γ1 �
Γ2)� Γ3 and Γ′ = (Γ3 � Γ2)� Γ1. We show that Γ ∼= Γ′.

Let ΞL12 be close (ΞL1 � ΞL2) without resources not observable in ΞE1\ΞL2∧
ΞE2 \ ΞL1. Then Γ1 � Γ2 = (Σ1 ∧ Σ2; ΞL12 J ΞE1 \ ΞL2 ∧ ΞE2 \ ΞL1). The first
step (from Definition 4.2.6) for computing Γ is then

((Σ1 ∧ Σ2) ∧ Σ3; ΞL12 � ΞL3 J ΞE3 \ ΞL12 ∧ (ΞE1 \ ΞL2 ∧ ΞE2 \ ΞL1) \ ΞE3) .

The following property helps computing the environment component:

∀∆,∆1,∆2 :
(
∆1 ↪→ ∆2

)
⇒
(
∆ \∆1

∼= ∆ \∆2

)
(A.2)

We omit the proof but essentially, dependency reduction preserves the only
parts of ∆1 that matter when computing the subtraction ∆ \∆i. In particular,
ΞE3 \ ΞL12

∼= ΞE2 \ (ΞL1 � ΞL2).
Secondly,

∀∆1,∆2,∆3 : ∆1 \ (∆2 �∆2) ∼= (∆1 \∆2) \∆3

which is proved by “lifting up” the corresponding equality m1 − (m2 + m2) =
(m1 −m2)−m3 on multiplicities.

The environment component, as \ distributes over ∧ (Definition 3.9.1), is
therefore ∼=-equivalent to

ΞE3 \ (ΞL1 � ΞL2) ∧ ΞE1 \ (ΞL2 � ΞL3) ∧ ΞE2 \ (ΞL3 � ΞL1)

for which it is easy to see that swapping 3 and 1 indexes yields an equivalent
statement.

Step two for computing Γ is doing the closure of the local statement ΞL12 �
ΞL3. By closure uniqueness,

close (close (ΞL1 � ΞL2)� ΞL3) ∼= close (ΞL1 � ΞL2 � ΞL3)

A.1. PROOFS FOR SECTIONS 3, 4 AND 5 129

in which, again, swapping 1 and 3 yields an equivalent statement.
As far as step three is concerned, dropping non-observable resources com-

mutes with statement equivalence so we are done.

A.1.4 Simple Correctness and Structural Equivalence (L. 3.12.2)

This lemma has two parts that can be proven independently:

1. simple correctness is preserved by structural congruence

2. simple correctness is preserved by type equivalence

The proof of part 1 relies on two elementary properties of structural congru-

ence whose proof is omitted: ≡ is a strong bisimulation (Q ≡ P µ−−→ P ′ implies

∃Q′ : Q
µ−−→ Q′ ≡ P ′) and preserves the set of free names (P ≡ Q implies

fn(P) = fn(Q)).
Let Γ |=# P and Q ≡ P . We show that Γ |=# Q as well. Point 1 of

Definition 3.12.1 is an immediate consequence of Γ |=# P and ≡ preserving the
set of free names.

Point 2 of Definition 3.12.1 is an immediate consequence of Γ |=# P and ≡
being a bisimulation, keeping for Q the same Γ+ that was used for P .

Point 3 of Definition 3.12.1 is done by inspecting a proof of ≡ being a bisim-
ulation: No application of (Rep) is ever added or removed when transforming

P
µ−−→ P ′ to Q

µ−−→ Q′. Concerning uniqueness of the µ transition: the set of
top-level guards, and whether their subject port is free is preserved by ≡.

We now proceed to part 2 of this proof (type equivalence preserves simple

correctness). Let (Γ;P)
µ̃−−→ (Γ′;P ′) be a transition sequence where Γ |=# P ,

and let Θ ∼= Γ. As the transition operator commutes with ∼=-equivalence, there

is (Θ;P)
µ̃−−→ (Θ′;P ′) with Θ′ ∼= Γ′.

Property 1 from Definition 3.12.1 is satisfied as the channel types in Γ′ and
Θ′ must be equal, by definition of ∼=.

For property number 2, there is a set of ports p̃ whose environment multi-
plicity got raised to ? in Γ+, and let Θ+ be equal to Θ′ but setting environment
multiplicities of p̃ to ?. Again, as ∼= commutes with o, keeping the same µ′ as
with Γ+, Θ+ o µ′ is well defined.

Property number 3 is satisfied because the multiplicity of a port is preserved
by type equivalence.

A.1.5 Closure Uniqueness (Lemma 4.2.4)

We proceed in increasing generality, by first focusing on special cases. Let:

∆ =
∧
i∈I

γi/ εi (A.3)

where γi 6= γi′ for any distinct i and i′. We only consider points 1, 2 and 4 from
Definition 5.1.3 for the time being. The following definition allows to merge the
first two rules:

Notation A.1.6 (Alternative Operator) Let pk be a resource and ε a de-
pendency. Then pk ∗ ε is equal to pk ∨ ε if k = A, and to pk ∧ ε if k = R.

130 APPENDIX A. PROOFS

We write ∆\ α̃ to mean (
∧
i∈I:γi 6∈α̃ γi/εi)∧(

∧
α∈α̃ α/⊥), and ∆̂(γi) is ε̂i, γi’s

dependencies in ∆̂. The following definition can be used to construct a closure
explicitly:

Definition A.1.7 (∆-Closure) A ∆-closure of a statement Θ (typically cho-
sen equal to ∆) is a statement close(∆) (Θ) = Θ′ inductively constructed as
follows:

1. close(∆) (>)
def
= > and close(∆) (⊥)

def
= ⊥

2. close(∆) (γ/ ε)
def
= γ/ (close(∆\γ) (ε))

3. close(∆) (γ)
def
= γ ∗ close(∆\γ) (∆(ε)).

4. close(
∧
i∈I γi/εi)

(γ)
def
= γ if @i ∈ I : γi = γ.

5. close(∆) (∆1 ∧∆2)
def
= close(∆) (∆1) ∧ close(∆) (∆2).

It is easily seen by induction on the number of symbols appearing in the
representation of ∆ plus the number of statements in Θ that do not depend on
⊥, that the above procedure terminates after a finite number of steps.

We will now show that close(∆) (∆) = close (∆).

Let ∆̂ = close(∆) (∆). Then any ∆′ such that ∆̂ ↪→ ∆′ satisfies ∆̂ ∼= ∆′. In
other words, for all distinct j and k:

ε′k
def
= ε̂k{γj∗(ε̂j{

⊥/γk})/γj} ∼= ε̂k (A.4)

By construction, every γi appearing on the rhs of a / operator occurs as
γi ∗ close(∆\γ̃) (εi) where γ̃ is the set of all resources “wrapping” that statement
(including γi). Moreover, within a statement γi/ ε or γi ∗ ε, any γi appearing in
ε occurs as γi ∗ ⊥.

Assume w.l.o.g. that γj appears exactly once in ε̂k (if it never appears then
ε̂k = ε′k, and if it appears more than once, simply repeat the construction
below that many times). We write Ck[·] for the unique behavioural context (a
behavioural statement with one hole [·]) such that ε̂k = Ck[γj ∗ close(∆\γ̃) (εj)].
Applying the substitution in (A.4) we get

ε′k = Ck[γj ∗
(

close(∆\γ̃) (εj) , close(∆\{γj ,γk}) (εj)
)
] (A.5)

Now assume w.l.o.g. that there is exactly one γl ∈ γ̃ that appears in ε̂j , and
moreover that γl appears exactly once in ε̂j . (Again, if there’s more than one
occurence of a resource from γ̃ in ε̂j , then all of them can be individually trans-
formed as described below. If there’s none, close(∆\γ̃) (εj) = close(∆\γjγk) (εj),
and ε′k

∼= ε̂k follows from γ ∗ (ε, ε) being either γ ∨ ε ∨ ε or γ ∧ ε ∧ ε, that both
reduce to γ ∗ ε.) Let Cj[·] by the only behavioural context such that

ε̂j = Cj[γl ∗ close(∆\γ̃′) (εl)] (A.6)

for some γ̃′ with γj ∈ γ̃′.
The complete dependency chain obtained above can be seen in the following

diagram, where Ck[·] is the composition of the two arrows from γk to γj , and
Cj[·] is represented by the arrow going back from γj to γl.

A.1. PROOFS FOR SECTIONS 3, 4 AND 5 131

As γl ∈ γ̃, the context Ck[·] can uniquely be split into C0
k[·] and Cl[·] (corre-

sponding to the two horizontal arrows in the diagram) so that Ck[·] = C0
k[Cl[·]],

and close(∆\γ̃′) (εl) = Cl[γj ∗ ⊥] (note that γj ∈ γ̃′ implies γ̃′(γj) = ⊥).

Composing (A.4) and (A.6) we get

ε′k
∼= Ck[γj ∗

(
Cj[γl ∗ ⊥] , Cj[γl ∗ Cl[γj ∗ ⊥]]

)
]

Splitting Ck[·]:

ε′k
∼= C0

k[Cl[γj ∗
(
Cj[γl ∗ ⊥] , Cj[γl ∗ Cl[γj ∗ ⊥]]

)
]]

Applying the Nesting Elimination Lemma (A.1.1) with “Cl[γj ∗ [·]]” for C[·],
this becomes

ε′k
∼= C0

k[Cl[γj ∗
(
Cj[γl ∗ ⊥] , Cj[γl ∗ ⊥]

)
]]

By idempotence, and reuniting C0
k[C[·]] to Ck[·] we get ε′k

∼= Ck[γj ∗
(
Cj[γl ∗

⊥]
)
] = ε̂k, as required.

This completes the proof that ∆′ = close(∆) (∆) is a closure. We still need
to show that it is the only closure, i.e. any closure of ∆ is ∼=-equivalent to ∆′.

Let ∆ ↪→ ∆′′ be s.t. ∆′′ ↪→ ∆′′′ implies ∆′′ ∼= ∆′′′ for all ∆′′′.

By the definition of ↪→, ∆′′ can be obtained from ∆ by, a certain number of
times, replacing γi by γi ∗ εi. (Technically an individual application of a rule in
5.1.3 introduces some ε′i not necessarily equal to εi but as ε′i was itself obtained
from εi by applying similar transformations, this description is correct).

A resource occurrence γj in a statement is said “bare” if it is neither followed
by the ∗-operator nor contained in the ε of a statement γj ∗ ε.

A bare occurrences of a resource γj can be “completed” by applying Defini-
tion A.1.6 to replace all γj in the offending statement by γj ∗ (∆′′(γj){⊥/γk}).
Repeating this procedure as many times as required produces a statement ∆′′′

that has no bare resource occurrences, and that satisfies ∆′′ ↪→ ∆′′′. As ∆′′ was
assumed to be a closure, ∆′′ ∼= ∆′′′. Nested resource developments (γi ∗ ε where
ε contains γi ∗ ε′ for some ε′ can be reduced as shown above (replacing γi ∗ ε′
by γi ∗ ⊥), resulting in ∆′′′ ∼= close(∆) (∆), as required.

A.1.6 Normal Form (Lemma 4.2.13)

We only prove point 1 as point 2 is similar (note that the direction of the relation
is inversed because adding terms to a disjunction makes it weaker, while adding
terms to a conjunction makes it stronger).

Let {εi}i and {εj}j be sets of dependencies as in the Lemma statement. For
all j ∈ J , let ε′j = εi such that ε′j � εj . As � is a congruence relation we have∨

j∈J
ε′j �

∨
j∈J

εj (A.7)

132 APPENDIX A. PROOFS

By idempotence, multiple ε′j equal to the same εi can be replaced by a single
one, so we have ∨

i∈I0

εi ∼=
∨
j∈J

ε′j (A.8)

where I0 = {i ∈ I : ∃j ∈ J : ε′j = εi}. Applying the ε ∨ ε′ � ε rule we get∨
i∈I

εi �
∨
i∈I0

εi (A.9)

as I0 ⊆ I. Composing the three above relations we have the desired inequality.

A.1.7 Composition of Disjoint Statements (Lemma 5.1.2)

According to Convention 4.2.2, Ξ and Ξ′ can be respectively written as Ξ ∧∧
i∈M pi

0 ∧
∧
i∈R piR/> and Ξ′ ∧

∧
i∈M ′ pi

0 ∧
∧
i∈R′ piR/>, where {pi}i∈M is

the set of ports that have a multiplicity specified in Ξ′, {pi}i∈R is the set of
ports whose responsiveness appear in Ξ′ on the lhs of a dependency “/ ” (and
the other way round for M ′ and R′).

In other words,

Ξ�Ξ′
def
= Ξr =

(
Ξ∧

∧
i∈M

pi
0∧
∧
i∈R

piR/>
)
�
(
Ξ′∧

∧
i∈M ′

pi
0∧
∧
i∈R′

piR/>
)
. (A.10)

From the Ξr written in (A.10) onwards, until the end of this proof, Conven-
tion 4.2.2 no longer applies, in particular Ξ� Ξ′ appearing in the development
below is not considered to have “hidden” resources.

As � is a logical homomorphism,

Ξr ∼= (Ξ� Ξ′) ∧
(
(
∧
i∈M

pi
0 ∧

∧
i∈R

piR/>)� Ξ′
)
∧

(
Ξ� (

∧
i∈M ′

pi
0 ∧

∧
i∈R′

piR/>)
)
∧

(
(
∧
i∈M

pi
0 ∧

∧
i∈R

piR/>)� (
∧
i∈M ′

pi
0 ∧

∧
i∈R′

piR/>)
)

(A.11)

Similarly developing the Ξ � Ξ′ expression down to its individual terms
and applying point 5 of the Definition to all of them we obtain a behavioural
statement using only >, ∨ and ∧, i.e. Ξ � Ξ′ ∼= >. The same applies to the
fourth term: as Ξ and Ξ′ have no common resources and M , R, M ′ and R′

index resources in Ξ and Ξ′, we get (
∧
i∈M pi

0 ∧
∧
i∈R piR/ >) � (

∧
i∈M ′ pi

0 ∧∧
i∈R′ piR/>) ∼= >. We are left with(

(
∧
i∈M

pi
0 ∧

∧
i∈R

piR/>)� Ξ′
)
∧
(
Ξ� (

∧
i∈M ′

pi
0 ∧

∧
i∈R′

piR/>)
)
.

We concentrate on the left factor (the right one is similar). Let’s distribute∧
i∈M pi

0 ∧
∧
i∈R piR/> into Ξ′ using �’s logical homomorphism. We obtain a

behavioural statement equal to Ξ′ where every atomic statement pm or γ/ ε got

A.1. PROOFS FOR SECTIONS 3, 4 AND 5 133

replaced by (
∧
i∈M pi

0∧
∧
i∈R piR/>)�pm or (

∧
i∈M pi

0∧
∧
i∈R piR/>)�(γ/ε),

respectively. In the first case, ∃i ∈M s.t. pi = p, so it is equal to∧
i∈M ; pi 6=p

(pi
0 � pm) ∧ (p0 � pm) ∧

∧
i∈R

(piR/>� pm)

i.e. (using point 1 of the Definition on the middle, and 5 for the rest)∧
i∈M ; pi 6=p

> ∧ p0+m ∧
∧
i∈R
> ∼= pm

In the second case, for a responsiveness statement, ∃i ∈ R s.t. γ = piR, so
it is equal to∧

i∈M
(pi

0 � (γ/ ε)) ∧
∧

i∈R; piR 6=γ

(piR/>� (γ/ ε)) ∧ (γ/>� (γ/ ε))

i.e. (using point 2 of the Definition on the right, and 5 for the rest)∧
i∈M
> ∧

∧
i∈R; piR 6=γ

> ∧ ((γ/>) ∧ (γ/ ε)) ∼= γ/ ε

Finally, for an activeness statement, noting that (
∧
i∈M pi

0∧
∧
i∈R piR/>) ∼=

(
∧
i∈M pi

0 ∧
∧
i∈R piR/>) ∧ > ∼= (

∧
i∈M pi

0 ∧
∧
i∈R piR/>) ∧ (γ/⊥):∧

i∈M
(pi

0 � (γ/ ε)) ∧
∧
i∈R

(piR/>� (γ/ ε)) ∧ (γ/⊥� (γ/ ε))

i.e. (using point 3 of the Definition on the right, and 5 for the rest)∧
i∈M
> ∧

∧
i∈R; piR 6=γ

> ∧ ((γ/⊥) ∨ (γ/ ε)) ∼= γ/ ε

We conclude that (
∧
i∈M pi

0 ∧
∧
i∈R piR/ >) � Ξ′ ∼= Ξ′, and similarly Ξ �

(
∧
i∈M ′ pi

0∧
∧
i∈R′ piR/>) ∼= Ξ, so (A.11) becomes Ξr ∼= >∧Ξ′∧Ξ∧> ∼= Ξ∧Ξ′

and we’re done.

A.1.8 Bisimulation and Type Equivalence (Lemma 5.2.7)

Inspecting Definition 5.2.6, it is clear that Γ |= P is only concerned about
transition sequences available from P , and not of P ’s structure (beyond the
implicit assumption that Γ |=# P but this is assumed in Lemma 5.2.7 as well).
Therefore, having P ∼ P ′, Γ |= P if and only if Γ |= P ′. We now focus on the
more interesting part of the lemma, that weakening preserves correctness.

Let Γ |= P , and let f be a strategy function satisfying the requirements of
Definition 5.2.6. Let Θ � Γ. We show that Θ |= P .

We rely on the fact that o commutes with both � and ↘ (if Γ o µ̃ = Γ′

then Θ o µ̃ � Γ′, and for any statement Γ′ with Θ′ � Γ′, for any projection
Γ′ ↘ Γ′′ there is a projection Θ′ ↘ Θ′′ such that Θ′′ � Γ′′. There exists thus
a tight matching1 between the transition network starting from (Γ;P) and the

1Note that this matching need not be unique because an elementary statement can be
weakened to a non-elementary statement, as in α � α ∨ (β1 ∧ β2) which has two projections
α ∨ βi. However the proof works no matter which projection is chosen.

134 APPENDIX A. PROOFS

one from (Θ;P), which permits translating f into a strategy function f ′ for
Θ |= P : given a transition sequence from (Θ;P) to (Θ′;P ′), let (Γ′;P ′) be
the endpoint of the corresponding sequence from (Γ;P). Then f ′(Θ′;P ′) is the
typed process corresponding to f(Γ′;P ′).

Consider an infinite transition sequence as in the Definition but starting with
(Θ;P) = (Θ0;P0). Using the above defined mapping there is a corresponding
transition sequence from (Γ;P), which, by Γ |= P , satisfies the requirements
of the Definition for some α and n, so for all i with pi 6= τ , (α/ piA) � Γ′i. As
Γ′i � Θ′i, we also have (α/ piA) � Θ′i. Secondly, for some ε with (α/ ε) � Γn
(and therefore (α/ ε) � Γn � Θn), α/ ε is immediately correct for (Γn;Pn).
Inspecting the Definition 6.3.1 for immediate correctness, it only depends on
the process type in the third point, and then only for the channel type σ of a
transition’s subject, which is preserved by weakening (weakening may extend
the channel type mapping but not change or remove a channel’s type), so α/ ε
must be immediately correct for (Θn;Pn), for the same reason it is immediately
correct for (Γn;Pn).

A.2 Subject Reduction

In this section we prove Proposition 5.6.3 on the existential type system ex-
tended with events and branching resources. This proof is nonetheless also
valid for types not containing any sA-resource, i.e. for arbitrary instantiations
of the existential type system.

We show that, if Γ `K P , (Γ;P)
µ−−→ (Γ′;P ′) then there is Γ0 such that

Γ0 `K P ′ and Γ0 � Γ′.
Following Lemma A.1.3 we first work on the branchings performed by the

transition, and them proceed with the proofs ignoring the (Sum) rule from the
LTS.

Let Γ `K G.P and Γ̂ `K G.P + Q, the latter being obtained from the
former using (A-Sum).

From (A-Sum), Γ̂ = (sub(G) + s)A / ε ∧ (Γ ∨ ΓQ), for some ε, s and ΓQ
depending on S. By Ξ1 ∨ Ξ2 � Ξ1, Γ̂ �

(∑
i∈I pi

)
A
/ ε ∧ Γ.

Then, (at least) one of the following statements is true:

• ε ∼= ⊥ (in which case Γ̂ � Γ), or

• the transition operator removes it.

We prove this in the beginning of the following subsections as the proof depends
on µ.

Secondly, all operators used in the transition operator are either logical ho-
momorphisms or (in the case of process type composition) commute with dis-
junction. So (Γ1 ∨ Γ2) o µ ∼= (Γ1 o µ)∨ (Γ2 o µ), and one can assume without loss
of generality that the process type being considered contains no disjunction.

We will prove the lemma for τ -reductions, input transitions and output
transitions, in that order.

We first consider non-replicated prefixes and then show that if subject reduc-
tion holds when consuming non-replicated prefixes, it still holds with replicated
prefixes.

A.2. SUBJECT REDUCTION 135

A.2.1 τ-Reductions

First assume µ = τ . Then, by Lemma A.1.4,

P ≡ (νz̃) (Q |
∑
i∈I

Gi.Pi |
∑
i′∈I′

Gi′ .Pi′), (A.12)

and there are a, ı̂ ∈ I and ı̂′ ∈ I ′ such that sub(Gı̂) = a and sub(Gı̂′) = ā.

Lemma A.2.1 (The Sums are not Active) Let Γ `K P where P is given
by (A.12).

Then Γ’s local behavioural statement does not contain (
∑
i∈I sub(Gi))A / ε

or (
∑
i′∈I′ sub(Gi′))A/ ε for ε 6∼= ⊥.

Proof Let

(Σ; ΞL J ΞE) `K
∑
i∈I

Gi.Pi and (Σ′; Ξ′L J Ξ′E) `K
∑
i′∈I′

Gi′ .Pi′

with
ΞE =

∨
j∈J

Ξj and Ξ′L =
∨
k∈K

Ξ′k

being normal forms of ΞE and Ξ′L. Then, assume ΞL contains (
∑
i∈I sub(Gi))A

(if it doesn’t, we’re done). By (A-Sum), ΞE must have no concurrent pi′ :

∀j ∈ J :
(
Ξj o ā ∼= ⊥ or ∀i ∈ I \ {ı̂} : Ξj o sub(Gi) ∼= ⊥

)
(A.13)

As sub(Gı̂′) = ā, there is m 6= 0 s.t. ām `K Gı̂′ .Pı̂′ , which gets carried over by
(A-Sum) to Ξ′L as

ām � Ξ′
k̂

(A.14)

for some k̂. Now, when applying (E-Par) to type
∑
i∈I Gi.Pi |

∑
i′∈I′ Gi′ .Pi′ ,

the environment component of the resulting type (see Definition 3.9.1) is:∨
j∈J Ξj∨
k∈K Ξ′k

=
∨

ρ:K→J

∧
k∈K

Ξρ(k)

Ξ′k

Pick an arbitrary ρ and let j = ρ(k̂). Then, by (A.13) and (A.14), either

Ξj \ Ξ′
k̂
∼= ⊥ (in case Ξj o ā ∼= ⊥) or Ξj \ Ξ′

k̂
� ā? ∧

∧
i∈I\ı̂ sub(Gi)

0
(because

Ξ o p = ⊥ iff p0 � Ξ). All j in the first case drop from the disjunction over

ρ. Using ∆ ∧ ∆′ � ∆, we get ΞE \ Ξ′L � ā? ∧
∧
i∈I\{ı̂} sub(Gi)

0
. In other

words,
(∑

i∈I sub(Gi)
)
A

is not observable in (Σ; ΞL J ΞE)�(Σ′; Ξ′L J Ξ′E), and
is dropped by the application of the clean operator (Definition 6.2.1), as specified
in Definition 4.2.6.

It can be similarly shown that P ’s behavioural statement doesn’t contain
(
∑
i∈I′ sub(Gi))A/ ε

′ for ε′ 6∼= ⊥. 2

Removing the sums from (A.12) we get

(νz̃) (Q | Gı̂.Pı̂ | Gı̂′ .Pı̂′) (A.15)

Lemma A.2.1 implies that (A.12)’s type is stronger than (A.15)’s, so it is
now enough to prove subject reduction for transitions not using (Sum).

136 APPENDIX A. PROOFS

We can pick Q = 0 and z̃ = ∅, as the general case is an immediate conse-
quence of Lemma A.1.5.

Let P = a〈x̃〉l
′
.O | a(ỹ)

l
.I, and consider the transition P

τ−−→ P ′ = O | I{x̃/̃y}.
We run the typing derivation on both P and P ′ and show that the former’s type
is a weakening of the latter’s.

Let ΓO `K O and ΓI `K I. The input’s type is (νỹ) Γ′I where, using
(E-Pre),

Γ′I = a : σ �
∧
k∈K

propk(σ, a(ỹ)
l
,m,m′)�

σ[ỹ]/
(
depK(a(ỹ)

l
) ∧ (l ∨ āR)

)
� ΓI / depK(a(ỹ)

l
) (A.16)

and the output is typed as

Γ′O = a : σ �
∧
k∈K

propk(σ, a〈x̃〉l
′
,m,m′)�

σ[x̃]/
(
depK(a〈x̃〉l

′
) ∧ (l′ ∨ aR)

)
� ΓO/ depK(a〈x̃〉l

′
). (A.17)

Let’s first name a few important types and dependencies:
Let Γ = Γ′O � (νỹ) Γ′I be the pre-transition type and Γ′ = ΓO � ΓI{x̃/̃y} the

type obtained by re-typing the post-transition process.
We distinguish dependency statements in ΓI for resources based on param-

eters (ỹ) and others, and refer to them using two index sets, respectively Y and
O: the dependency statements in ΓI are∧

i∈Y
γi/ εi ∧

∧
i∈O

γi/ εi (A.18)

with ∀i ∈ Y : n(γi) ∈ ỹ and ∀i ∈ O : n(γi) 6∈ ỹ. We will also need to dis-
tinguish between dependencies on parameter resources and other resources, so
a dependency εi is sometimes written in the following normal form (Lemma
4.2.12):

∀i ∈ O ∪ Y : εi =
∨
j∈Ii

εOij ∧ εYij (A.19)

where n(εOij) ∩ ỹ = ∅ and n(εYij) ⊆ ỹ.
We similarly give names to dependencies allowed by the protocol. Just like

Y is an indexing set for resources to be provided by the input side, Y ′ is an
indexing set for output side resources (as a rule we use a tick ′ when refering to
output-related objects:)

σ[ỹ] =
∧
i∈Y

γi/ ε
P
i and σ̄[ỹ] =

∧
i′∈Y′

γi′ / ε
P
i′ (A.20)

Similarly for x̃ (that may have repeated names unlike ỹ):

σ[x̃] =
∧
i∈X

γi/ ε
P
i and σ̄[x̃] =

∧
i′∈X ′

γi′ / ε
P
i′ (A.21)

We need to subtract one from the local multiplicities from both a’s input and
output ports, which is permitted by the weakening relation (taken backwards
as we’re strengthening).

A.2. SUBJECT REDUCTION 137

Secondly, existential resources on a and ā need to be dropped. As we work
with non-replicated prefixes, we can assume neither has ω multiplicity. Moreover
they both clearly have a non-zero multiplicity, so that both are either 1 or ?. If
both are linear then they are no longer observable so those existential resources
dropped when applying the erasure operator (Definition 5.1.5). If both are plain
then propk(σ,G, ?, ?) = > so there’s nothing to prove. If one is plain and the
other is linear then only the plain one can have existential resources, but then
when composing Γ′I and Γ′O it is no longer observable, so, again, we get that
neither a nor ā have existential resources in Γ′.

By hypothesis (see beginning of Section 5) we have R ∈ K. The elementary

responsiveness rule ((5.6) on page 58) gives propR(σ, a(ỹ)
l
,m,m′) = aR/ l̄∨σ[ỹ]

which, composed with (A.20), yields propR(σ, a(ỹ)
l
,m,m′) = aR/ (l̄∨

∧
i∈Y γi).

Applying that transformation in (A.16) and (by strengthening) dropping the

dependencies on depK(a(ỹ)
l
):

Γ′I � a : σ �
∧
k∈K

propk(σ, a(ỹ)
l
,m,m′)�

aR/

(
l̄ ∨
∧
i∈Y

γi

)
� σ[ỹ]/ (l ∨ āR)� ΓI (A.22)

The remaining ak (k 6= R) can be dropped by strengthening (noting that
α/ε�α/ε′ = α/(ε∧ε′) � α/ε′ if α is universal, and generalises to α/ε�Ξ � Ξ).

Similarly to (A.18) we use assume the local component of (A.22) has the
following normal form:∧

i∈Y
γi/ ε

′
i ∧

∧
i∈O

γi/ ε
′
i ∧ aR/ εI . (A.23)

The main difference between εi and ε′i is due to dependencies getting reduced
with σ̄[ỹ]. Their normal forms is similarly annotated with a tick ′ :

∀i ∈ O ∪ Y : ε′i =
∨
j∈I′i

ε′ij
O ∧ ε′ij

Y
(A.24)

where n(ε′ij
O

) ∩ ỹ = ∅ and n(ε′ij
Y

) ⊆ ỹ.
We may now compute a’s input responsiveness dependencies εI , by reducing

aR / (l̄ ∨
∧
i∈Y γi) from (A.22) with statements in (A.24), dropping ỹ-based

dependencies and any other aR-dependency provided by ΓI :

εI � l̄ ∨
∧
i∈Y

∨
j∈I′i

ε′ij
O

(A.25)

Combining (A.23) and (A.24) we can compute the behavioural statement in
(νỹ) Γ′I :

(aR/ εI) ∧
∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧ ε′ij

∗

 (A.26)

where ε′ij
∗

is one of ⊥ (if pk � ε′ij
Y

for some existential pk), l ∨ āR (for terms

resulting of the composition of ε′ij
Y

with the σ̄[ỹ]-term) or > (for ε′ij
Y ∼= >).

138 APPENDIX A. PROOFS

We now proceed to computing Γ’s local behavioural statement ΞL based on
(A.17) and (A.26):

ΞL �
∧
k∈K

propk(σ, a〈x̃〉l
′
,m,m′)� σ[x̃]/

(
depK(a〈x̃〉l

′
) ∧ (l′ ∨ aR)

)
�

ΓO/ depK(a〈x̃〉l
′
)� aR/ εI ∧

∧
i∈O

γi/
∨
j∈I′i

(
ε′ij

O ∧ ε′ij
∗
)

(A.27)

Like we did on the ΓI -side, dropping the remaining āk and dependencies on

depK(a〈x̃〉l
′
), replacing āR’s dependencies produced by

propk(σ, a〈x̃〉l
′
,m,m′) = l̄′ ∨ σ[x̃]

when k = R ∈ K by the actual resource set, replacing aR’s dependencies using
(A.25), and developing σ[x̃] with (A.20) we get the following (stronger) type:

āR/

(
l̄′ ∨

∧
i∈X ′

γi

)
�

(∧
i∈X

γi/
(
εPi ∧ (l′ ∨ aR)

))
� ΓO�

aR/

l̄ ∨ ∧
i∈Y

∨
j∈I′i

ε′ij
O

 ∧ ∧
i∈O

γi/
∨
j∈I′i

(
ε′ij

O ∧ ε′ij
∗
)

The aR-dependency of the input instantiation term can be reduced with εI ,
the strong dependency replaced by a weak one, and then the aR-term can be
dropped, further strengthening the type (replacing the i from aR’s dependencies
by ı̂ to avoid name clashes:)

āR/

(
l̄′ ∨

∧
i∈X ′

γi

)
�
∧
i∈X

γi/

εPi ∧
l′ ∨ l̄ ∨ ∧

ı̂∈Y

∨
j∈I′ı̂

ε′ı̂j
O

�
ΓO �

∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧ ε′ij

∗

The conjunction on ı̂ ∈ Y can be strengthened by keeping only the ı̂ = i

factor:

āR/

(
l̄′ ∨

∧
i∈X ′

γi

)
�
∧
i∈X

γi/

εPi ∧
l′ ∨ l̄ ∨ ∨

j∈I′i

ε′ij
O

�
ΓO �

∧
i∈O

γi/
∨
j∈I′i

(
ε′ij

O ∧ ε′ij
∗
)

We similarly expand the ε′ij
∗

factors. When ⊥ they can (by the ∀ε : ⊥ � ε

rule) be strengthened to ε′ij
Y {x̃/̃y}. Those equal to > occur precisely when

ε′ij
Y {x̃/̃y} ∼= > as well. Finally, ε′ij

∗
= l ∨ āR case can be reduced with the

A.2. SUBJECT REDUCTION 139

āR/ (l̄′ ∨
∧
i∈X ′ γi)-term, resulting in l ∨ (āR ∧ (l̄′ ∨

∧
i∈X ′ γi)). That term can

be further strengthened into l ∨ l̄′ ∨ ε′ijY {x̃/̃y}, resulting in

∧
i∈X

γi/

εPi ∧
l′ ∨ l̄ ∨ ∨

j∈I′i

ε′ij
O

� ΓO�

∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧

(
l ∨ l̄′ ∨

(
ε′ij

Y {x̃/̃y}
)) (A.28)

We now show that dropping the event annotations from that expression
yields an equivalent type, building on the following lemma:

Lemma A.2.2 (Event Elimination) Let {εi}i, {ϕi}i, {ε′j}j and {ϕ′j}j be
dependency sets not using the event l, and {γi}i, {γ′j}j two resource sets, where i
and j are assumed to cover some indexing sets I and J . If, for all i and j, either
εi � ε′j or ϕi � ϕ′j holds then

∧
i,j

(
γi/ (εi ∧ (l̄ ∨ ϕi)) ∧ γ′j/ ((l ∨ ε′j) ∧ ϕ′j)

) ∼=∧
i,j

(
γi/ (εi ∧ ϕi) ∧ γ′j/ (ε′j ∧ ϕ′j)

)
.

We omit the proof but it amounts to showing that, whenever a dependency
causes inclusion of any l ∨ ε′j in a l̄ ∨ ϕi (or vice versa), either dependencies in
ε′j are also included outside of the l ∨ . . . region, or the entire l ∨ ε′j becomes

∧-composed with ⊥, so that the l ∨ l̄ ∨ ε ∼= > rule becomes redundant, and
therefore the events can be omitted.

To remove event annotations from (A.28) we will show that ∀i′ ∈ X , i ∈
O, j ∈ I ′i, either of the following hold

εPi′ � ε′ij
Y

(A.29)∨
j′∈I′

i′

ε′i′j′
O � ε′ij

O
(A.30)

satisfying the conditions of the Lemma. Specifically, assume that (A.29) does
not hold. As neither dependency in the inequality use disjunctions, there is α
such that (for α′ = α{x̃/̃y}) α′ � ε′ij

X
,

α � ε′ij
Y
, (A.31)

α 6� εPi′ . (A.32)

Let k ∈ Y be such that γk = α (see (A.20)). By the definition of parameter
instantiation (if γi′ does not depend on α then α depends on γi′), (A.32) implies

γi′ � εPk . (A.33)

As ε′ij
Y

is taken from Γ′I which is assumed to be closed, we may apply

dependency reduction to it and preserve equivalence (i.e. replacing ε′ij
Y

with
the resulting dependency in (A.24) will give a type equivalent to Γ′I .)

Inequality (A.31) can also be written ε′ij
Y ∼= α ∧ ε′ij

Y
. Composing with the

σ̄[ỹ]/(l∨āR) term from (A.22), or more specifically γk/(l∨(āR∧εPk)) (remember

140 APPENDIX A. PROOFS

that γk = α), it becomes (α ∗ (l ∨ āR) ∧ εPk) ∧ ε′ij
Y

. Applying (A.33) rewritten

as εPk
∼= εPk ∧ γi′ we get (α ∗ (l ∨ āR) ∧ εPk ∧ γi′) ∧ ε′ij

Y
. As i′ ∈ O we can apply

(A.23) and get (α ∗ (l ∨ āR) ∧ εPk ∧ (γi′ ∗ ε′i′)) ∧ ε′ij
Y

where the meaning of the
second ∗ depends on what kind of resource γi′ is. Rewriting ε′i′ with (A.24) we
get

α ∗ (l ∨ āR) ∧ εPk ∧ (γi′ ∗
∨

j′∈I′
i′

ε′i′j′
O ∧ ε′i′j′

Y
)

 ∧ ε′ijY (A.34)

To summarise, ε′ij
Y

can be replaced by (A.34) in Γ′I (A.24), and the resulting
type is equivalent, so it can be used instead of Γ′I when computing (A.28).

Dependency (A.34) is strengthened by dropping l∨āR, εPk and all ε′i′j′
Y

, and
the two ∗ operators are handled like this: if they are conjunctions (for universal
resources) then the dependency is strengthened by dropping the resource on
their left, otherwise they are left as is and binding replaces the dependency on
their left by ⊥ so in both cases they drop, by ∀ε : ⊥ ∨ ε ∼= ε. Then, when
binding ỹ (A.26), (A.34) becomes

∨
j′∈I′

i′
ε′i′j′

O ∧ ε′ij
∗
. Written in normal form

(A.26), we replaced ε′ij
O

by ε′ij
O ∧

∨
j′∈I′

i′
ε′i′j′

O
, which is equivalent to say that∨

j′∈I′
i′
ε′i′j′

O � ε′ij
O

, which is precisely (A.30).

We can therefore apply Lemma A.2.2 to (A.28) twice (for l and then l′),
getting

Γ �
∧
i∈X

γi/

∨
j∈I′i

ε′ij
O ∧ εPi

�ΓO�
∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧

(
ε′ij

Y {x̃/̃y}
) (A.35)

The factors εPi can now be strengthened to ε′ij
Y {x̃/̃y} and, comparing with

(A.24), observe that the dependencies of γi for i ∈ X and O are exactly ε′i{x̃/̃y}:

Γ �
∧
i∈X

(γi/ ε
′
i) {x̃/̃y} � ΓO �

∧
i∈O

γi/
(
ε′i{x̃/̃y}

)
(A.36)

As substitution distributes on composition we get Γ � Γ′I{x̃/̃y}�ΓO. In order
to reach Γ′ we still need to transform Γ′I into ΓI , i.e. cancel the composition of
ΓI with σ̄[ỹ]/ āR.

Let γi/εi ∈ ΓI and consider a resource γi′ used in εi. Applying the parameter
instantiation (A.20) to it replaces it with γi′ ∗ (āR ∧ εPi′). If γi′ is a universal
resource, this can be immediately strengthened back to γi′ . If it is an existential
resource, then the āR/ σ̄[x̃] term from Γ′O can be applied to āR, strengthened
to keep only the γi′ resource, yielding γi′ ∨ (γi′ ∧ εPi′), which, by factoring γi′ ,
is equivalent to γi′ ∧ (> ∨ εPi′), itself equivalent to γi′ . Thus, all dependency
reduction due to the output instantiation can be cancelled as long as the output
responsiveness term is kept in the type and we get Γ � ΓO�ΓI{x̃/̃y}�σ̄[ỹ]/āR �
ΓO � ΓI{x̃/̃y} = Γ′, as desired.

A.2. SUBJECT REDUCTION 141

A.2.2 Output

Let Γ `K P
a〈x̃〉
−−−−→ P ′. Following Lemma A.1.3 we first work on any branching

(at most one in this case) performed by the transition, and them proceed with
the proofs ignoring the (Sum) rule from the LTS. We already dealt with the dis-
junction introduced by (E-Sum), and if a branching consumed by the transition
is active in Γ ((

∑
i pi)A), then it is removed as specified by Definition 3.7.1. We

can now proceed to the sum-less case.

Consider the transition P = a〈x̃〉l.Q
a〈x̃〉
−−−−→ Q.

Assuming Γ `K Q, we get the following type for P :

Γ′ = a : σ �
∧
k∈K

propk(σ, a〈x̃〉l,m,m′)�

σ[x̃]/
(
depK(a〈x̃〉l) ∧ (l ∨ aR)

)
� Γ/ depK(a〈x̃〉l) (A.37)

Having Γ′′ = Γ′ o a〈x̃〉, we want to show that Γ � Γ′′.
Recall that

Γ′′
def
= Γ′ o ā ⊗ σ̄[x̃]/ (āR J aR) (A.38)

We first show that multiplicities in Γ′′ are equal or weaker than the ones in
Γ, before proceeding to the dependency statements.

Simplifying (A.37) and (A.38) to only take into account the parts relevant
for multiplicities we get #Γ′′ = (ā� σ[x̃]�#Γ) o ā⊗ σ[x̃]. By associativity and
commutativity of � and Lemma A.1.5,

#Γ′′ � (ā�#Γ) o ā (A.39)

Let a’s multiplicities in Γ be
(
ami ∧ āmo J am

′
i ∧ ām′o

)
. Then in ā�Γ they

are (
ami ∧ āmo+1 J am

′
i ∧ ām

′
o−1
)

and in (ā� Γ) o ā they are(
ami ∧ ā(mo+1)−1 J am

′
i−1 ∧ ām

′
o−1
)
.

m′i − 1 ≤ m′i, m′o − 1 ≤ m′o and (by Lemma A.1.5), (mo + 1)− 1 � mo, so that

(ā� Γ) o ā � Γ (A.40)

Note that oā and \ā coincide in this case, as mo + 1 6= ω.
Composing (A.39) and (A.40) gives us #Γ′′ � #Γ, and we now proceed to

the dependency statements.
We use the |∆| notation to express the set of resources used in a dependency:

|α| = α and |∆1 ∧∆2| = |∆1 ∨∆2| = |∆1| ∪ |∆2|.
Let Ω = |σ̄[x̃]| \ {āk}k∈K, the set of resources to be provided by the output,

and T = (Ω∪|σ[x̃]|)\{āk}k∈K the set of resources to be provided on one side or
the other. In both cases we exclude āk because they interact with the statements
introduced by the (E-Pre) rule and have to be handled specially.

We show that each dependency statement in Γ′′ is also present in Γ, in a
possibly weaker form.

Dependencies in Γ′′ are partitioned as follows:

142 APPENDIX A. PROOFS

1. {āk}k∈K

2. Ω

3. T \ Ω

4. |Γ| \ ({āk}k∈K ∪ T)

We cover each of those classes in order.
1. {āk}k∈K
First consider k ∈ E . Output ā-existential properties in Γ′ and Γ′′ may be

provided by four different terms. In the following a missing āk-statement is
written āk/⊥.

• āk/ ε as given by propk(σ, a〈x̃〉l,m,m′) in the (E-Pre) rule,

• āk/ εc ∈ Γ,

• āk/ εi ∈ σ[x̃],

• āk/ εo ∈ σ̄[x̃].

In (A.38), the Γ′ o ā type contains āk/⊥, by definition of that operator. The
⊗σ[x̃]-operation preserves that statement (as it may only weaken existential
statements), so āk’s dependencies in Γ′′ are equal to those in σ̄[x̃] (after reducing
the āR-dependency), i.e. āk/ (ε′ ∧ εo) ∈ Γ′′ where ε′ is āR’s dependencies in Γ′′.

First assume εo ∼= ⊥. Then āk/ ⊥ ∈ Γ′′. The ∀ε : ε � ⊥ rule gives εc � ⊥
as required.

Now assume that εo 6∼= ⊥ but ε ∼= ⊥. The first case implies that āk ∈ |σ̄[x̃]|,
i.e. āR/ āk � Γ′, which reduces with āk / ⊥ to give āR/ ⊥, i.e. ε′ ∼= ⊥, which
itself causes āk/⊥ ∈ Γ′′, and εc � ⊥ concludes the case once more.

Now assume both εo 6∼= ⊥ and ε 6∼= ⊥. Since Γ′ o ā is well-defined, m′i > 0.
Since āk ∈ |σ̄[x̃]|, Convention 5.0.4 applies to forbid the type to have blocked
liveness, i.e. there is ām ∈ σ[x̃] with m > 0. Because (E-Pre) introduces that
type into Γ′, mi > 0 as well. The sum of two non-zero multiplicities being ?,2

the side condition in propA requires mo + m′o 6∈ {1; ?}. Since Γ′ includes ā1,
mo > 1. This excludes mo +m′o = 0, leaving only mo +m′o = ω. Therefore this
only holds in the second form of the structural lemma.

Now assume k ∈ U , and let āk/ ε0 ∈ Γ. Then ∃ε′ : āk/ ε
′ ∈ Γ′ and ε′ � ε0.

Then let āk/ ε
′′ ∈ Γ′′. We have ε′′ � ε′ so that ε′′ � ε0, as required.

2. Ω
We first calculate āR’s dependencies in Γ′.
Having ∀α ∈ Ω : α/εα ∈ Γ, fix a set of εαi and ε′αi and indexing sets Iα such

that:

εα ∼=
∨
i∈Iα

(εαi ∧ ε′αi) (A.41)

and |εαi| ∩ Ω = ∅, |ε′αi| ⊆ Ω for all α and i.

2This is a crucial requirement of the proof — if there were two non-zero multiplicities m1

and m2 such that m1 + m2 6= ? then a channel type with 1m1 and 1̄k in ξO and 1m2 in
ξI would not have blocked liveness but subject reduction would not hold for transitions like

a〈a〉
a〈a〉
−−−−→ 0.

A.2. SUBJECT REDUCTION 143

Let Φ be the set of functions ϕ such that dom(ϕ) = Ω and ∀α ∈ Ω, ϕ(α) ∈ Iα.
We say that such a function is at a circularity if σ[x̃]�

∧
α∈Ω(εαϕ(α)) contains

α/⊥ for some α ∈ Ω.
Define εϕ to be ⊥ if ϕ(Ω) is at a circularity, > otherwise. Having āR/ε0 ∈ Γ

(or ε0 = > if there is no such statement), āR/ ε
′ ∈ Γ′, with:

ε′ ∼= ε0 ∧
∨
ϕ∈Φ

(
εϕ ∧

∧
α∈Ω

ε′αϕ(α)

)
(A.42)

Finally, having σ̄[x̃] =
(
x̃ : σ̃; ũL ∧ δ̃L J ũE ∧ δ̃E

)
, let ∀α ∈ Ω : α/ εα0 ∈ δ̃L.

Then, ∀α ∈ Ω : α/ ε′′α ∈ Γ′′, with

ε′′α �
∨
ϕ∈Φ

(
εα0 ∧ εϕ ∧

∧
α′∈Ω

ε′α′ϕ(α′)

)
(A.43)

That equation gives a stronger form of ε′′α where we removed ε0 from (A.42)
as well as statements for resources α contained in |σ[x̃]| ∩ |σ̄[x̃]|, produced by
σ[x̃] in Γ′. Note that those statements may only be statements on universal
resources by Convention 5.0.4, and will therefore be added to εα using the ∧
operator, so that they may be dropped by applying the ∀ε1ε2 : ε1∧ε2 � ε1 rule.

The following lemma says that if āR’s dependencies isn’t ⊥ then all depen-
dencies of local resources on remote resources in Γ are contained in the protocol
(to be precise, by parameter instantiation of local resources, which includes
dependencies added to complete the protocol).

Lemma A.2.3 (Protocol Satisfaction) Let Ω, Φ, εαi and ε′αi be defined as
before (for all α ∈ Ω and i ∈ {0} ∪ Iα), and ϕ ∈ Φ be a function that is not at
a circularity.

Then, for all α, εαϕ(α) � εα0.

Proof εαϕ(α)
∼= β̃s ∧ β̃w with β̃s ⊆ β̃w and similarly let εα0

∼= (β̃′s <) ∧ (β̃′w ≤)

with β̃′s ⊆ β̃′w.
We show by contradiction that

β̃s ⊆ β̃′s ∧ β̃w ⊆ β̃′w. (A.44)

Let β ∈ β̃s \ β̃′s. Because β 6∈ β̃′s, β/ α � σ[x̃], which, when composed with
α/ εαϕ(α), yields α/⊥, contradicting ϕ not being at a circularity.

Now let β ∈ β̃w \ β̃′w. Similarly to the other case we obtain that β/α � σ[x̃],
which, again produces α/⊥, a contradiction.

Applying ∀ε1, ε2 : ε1 � ε1 ∧ ε2 on (A.44) yields (β̃s <) � (β̃′s <) and
(β̃w ≤) � (β̃′w ≤), and therefore εαϕ(α) � εα0. 2

We claim that (A.43) is weaker than α/ εα which is in Γ:
First, for all ϕ ∈ Φ and α ∈ Ω, taking i = ϕ(α), εαi � εα0 ∧ εϕ: If ϕ is at

a circularity then the inequality is an immediate consequence of ∀ε : ε � ⊥. if
ϕ is not at a circularity then εϕ = > and the inequality is proved in Lemma
A.2.3.

Second,
∧
α′∈Ω εα′ϕ(α′) � εαi, as a direct application of the ε1 ∧ ε2 � ε1 rule

(as ϕ(α) = i).
3. T \ ({āk}k∈K ∪ Ω)

144 APPENDIX A. PROOFS

Let α ∈ T (and not in {āk}k∈K ∪ Ω), with α/ εα ∈ Γ, ε′α ∈ σ[x̃]. Then
εα ∧ ε′α ∈ Γ′ with the additional dependency (depK(a〈x̃〉) ∧ aR) if l 6∈ l̃. Then,

by definition of the “⊗(σ[x̃]/ (depK(a〈x̃〉l) ∧ (l ∨ āAR)))” operation, ∃α′′ / ε
s.t. ε′′α ∈ Γ′′ and ε′′α � εα.

4. |Γ| \ ({āk}k∈K ∪ T)
Those resources have, in both Γ′ and Γ′′ and compared to Γ, just the addi-

tional dependency depK(a〈x̃〉l) which can be removed by strengthening.

A.2.3 Input

Let (Γ′;P ′)
a(x̃)
−−−−→ (Γ′′;P ′′), where P ′ = a(ỹ)

l
.P , Γ `K P and Γ′ `K P ′.

By the Renaming Lemma, Γ{x̃/̃y} `K P{x̃/̃y}.

A.2.4 Replication

Let P ≡ (!G).P0 | Q and consider a transition P
µ−−→ P ′ ≡ P | P0{x̃/̃y} (so

µ 6= τ , but the transformation given below can straightforwardly be extended to
transitions involving two guarded prefixes, for the µ = τ -case). For readability
purposes we omitted a restriction “νã” before P that would be needed for full
generality, but the proof is the same.

Let sub(G) = sub(µ) = p, obj(G) = ỹ and obj(µ) = x̃ (they may be different
in case G is an input), and set, for all k ∈ K, Ξk = propk(σ, !G,m+ ω,m′).

Following the type system rule (E-Pre), P ’s type Γ is as follows:

Γ =
(
p : σ; pω J pm ∧ p̄m

′
)
� ! (νz̃)

(∧
k∈K

Ξk�

σ[ỹ]/ (depK(G) ∧ p̄R)� Γ0/ depK(G)
)
� ΓQ (A.45)

where Γ0 `K P0 and ΓQ `K Q.
The proof involves extracting one element of the replicated process (as if

we invoked the usual rule !P 7→ (P | !P), which, remember, is not part of out
notion of structural congruence because a port with multiplicity ω should not
appear more than once in a process).

Let P̂ = Ĝ.P0 | (!G).P0 | Q where Ĝ is G but with sub(Ĝ) = q instead of p,
for some fresh port q (input if p is an input and output if p is an output). Note
that we keep obj(Ĝ) = obj(G) so if for instance G = a〈a〉 then we set Ĝ = b〈a〉
for some fresh b, not “b〈b〉”.

Observe that P̂
µ̂−−→ P ′ (where, again, µ̂ is such that µ̂{sub(G)/t} = µ and

obj(µ̂) = obj(µ)). Similarly to (A.45), P̂ has type Γ̂, in which ∀k ∈ K : Ξ̂k =
propk(σ, Ĝ, ?, ?):

Γ̂ =
(
q : σ; q1 J

)
� (νz̃)

(∧
k∈K

Ξ̂k � σ[ỹ]/ (depK(Ĝ) ∧ q̄R)� Γ0/ depK(Ĝ)
)
�(

p : σ; pω J pm ∧ p̄m
′−1
)
� ! (νz̃)

(∧
k∈K

Ξk�

σ[ỹ]/ (depK(G) ∧ p̄R)� Γ0/ depK(G)
)
� ΓQ (A.46)

Observe that we set p̄’s remote multiplicities to m′−1 rather than just m′ like in
(A.45), as our goal is to have Γ oµ and Γ̂ o µ̂ be as close as possible so that subject

A.2. SUBJECT REDUCTION 145

reduction with non-replicated guards on the latter can be used to describe the
former. We still have Γ̂ `K P̂ as (E-Pre) doesn’t put any restriction on remote
multiplicities of the complement.

Define a set of Γi and Γ̂i such that:∧
k∈K\{R}

Ξk � σ[ỹ]/ (depK(G) ∧ p̄R)� Γ0/ depK(G) =
∨
i∈I

Γi (A.47)

∧
k∈K\{R}

Ξ̂k � σ[ỹ]/ (depK(Ĝ) ∧ q̄R)� Γ0/ depK(Ĝ) =
∨
i∈I

Γ̂i (A.48)

As q is fresh, n(q) doesn’t appear in Γ0 or σ[ỹ] and

∀i ∈ I : Γ̂i{n(p)/n(q)} = Γi (A.49)

By definition of propR, Ξ̂R = pR/ σ[ỹ]. As � and νz̃ are logical homomor-
phisms, the q-part from (A.46) under z̃-replication is:

(νz̃)
(
qR/ σ[ỹ]�

∧
k∈K\{R}

Ξ̂k � σ[ỹ]/ (depK(Ĝ) ∧ q̄R)� Γ0/ depK(Ĝ)
)

= (νz̃)
∨
i∈I

(
qR/ σ[ỹ]� Γ̂i

)
=
∨
i∈I

(νz̃)
(
qR/ σ[ỹ]� Γ̂i

)
∼=
∨
i∈I

(
qR/ ε̂i ∧ (νz̃) Γ̂i

)
(A.50)

for some collection of ε̂i (which are σ[ỹ] “transformed” according to Γ̂i by the
reduction itself performed by �). Similarly,

(νz̃)
(
pR/ σ[ỹ]�

∧
k∈K\{R}

Ξk � σ[ỹ]/ (depK(G) ∧ p̄R)� Γ0/ depK(G)
) ∼=

∨
i∈I

(
pR/ εi ∧ (νz̃) Γi

)
for some set of εi. Replicating that type gives:

! (νz̃)
(∧
k∈K

Ξk � σ[ỹ]/ (depK(G) ∧ p̄R)� Γ0/ depK(G)
) ∼=∨

J⊆I

⊙
j∈J

(
pR/ εj � (νz̃) Γ2

j

)
(A.51)

We are now ready to compute Γ o µ and Γ̂ o µ̂. Since the definition of o
(Definition 5.1.6, page 50) is slightly different for inputs and outputs in the
polarity of the composition operator (� for inputs and ⊗ for outputs) and of
the parameter instantiation (σ[x̃] for inputs and σ[x̃] for outputs) we now assume
µ is an output. The proof for inputs is identical, with the two above changes
applied everywhere.

146 APPENDIX A. PROOFS

Using (Γ� Γ′) o p � (Γ o p)� Γ′ and (A.51):

Γ o µ �

(p : σ; pω J pm ∧ p̄m
′−1
)
�
∨
J⊆I

⊙
j∈J

(
pR/ εj ∧ (νz̃) Γ2

j

)⊗ σ[x̃]/ pR

(A.52)
Noting that ∨ is idempotent (so counting one item more than once is not a
problem) we have the following equality:∨

J⊆I

∆J
∼=
∨
i∈I

∨
J⊆I
J3i

∆J

Moreover, pR/ ε1� pR/ ε2 � pR/ ε1, so, in (A.52), we may move pR/ εj outside
the composition:

Γ oµ �

(p : σ; pω J pm ∧ p̄m
′−1
)
�
∨
i∈I

(
pR/ εi ∧

∨
J⊆I
J3i

⊙
j∈J

(νz̃) Γ2
j

)⊗σ[x̃]/ pR

(A.53)

Moving on to Γ̂ and Γ̂ o µ̂:

Γ̂ o µ̂ �

(p : σ; pω J pm ∧ p̄m
′−1
)
�
∨
J⊆I

⊙
j∈J

(
pR/ εj ∧ (νz̃) Γ2

j

)
�
(
q : σ; q0 J

)
�
∨
i∈I

(
qR/ ε̂i ∧ (νz̃) Γ̂i

))
⊗ σ[x̃]/ qR (A.54)

The
(
q : σ; q0 J

)
factor is neutral for � (it is ∼=-equivalent to >) so we may

drop it. We have ∀i : ε̂i � εi as the latter may have “captured” responsiveness
of additional p-prefixes found in Γ0 (the continuation). As / is contravariant
on the right with respect to � (Definition 3.6.1, page 22), ∀i : qR/ ε̂i � qR/ εi,
so (A.54) becomes

Γ̂ o µ̂ �

(p : σ; pω J pm ∧ p̄m
′−1
)
�
∨
J⊆I

⊙
j∈J

(
pR/ εj ∧ (νz̃) Γ2

j

)
�
∨
i∈I

(
qR/ εi ∧ (νz̃) Γ̂i

))
⊗ σ[x̃]/ qR (A.55)

Let’s call that type ΓM (“M” as it is in some sense “in the Middle” between
Γ o µ and Γ̂ o µ̂). Inequality (A.55) can then be written ΓM � Γ̂ o µ̂, or

ΓM{n(q)/n(p)} � Γ̂ o µ̂{n(q)/n(p)} (A.56)

Applying (A.49) and the definition of replication (Γ � ! Γ = ! Γ), (A.53)
becomes

Γ o µ � ΓM{n(q)/n(p)} (A.57)

A.3. SIMPLE CORRECTNESS 147

We have already shown subject reduction for transitions using non-replicated
guards, so there is Γ′ such that Γ̂′ o µ̂ � Γ′ and Γ′ `K P ′. The first equation
implies

Γ̂′ o µ̂{n(q)/n(p)} � Γ′{n(q)/n(p)} (A.58)

As n(q) doesn’t appear in P ′, it doesn’t appear in Γ′ either so

Γ′{n(p)/n(q)} = Γ′ (A.59)

Chaining (A.57), (A.56), (A.58) and (A.59) we get Γ o µ � Γ′, as required.

A.3 Simple Correctness

As a pre-requisite to soundness we show the following lemma:

Lemma A.3.1 (Simple Correctness) Let Γ ` P . Then Γ |=# P .

The following auxiliary lemma says that operators used by the type system
may only increase or preserve local multiplicities:

Lemma A.3.2 Let Γ = (Σ; ΞL J ΞE) and Γ′ be process types and let pm � ΞL.

• If Γ � Γ′ is well defined and equal to some (Σ′; Ξ′L J ΞE) then ∃m′ ≥ m

s.t. pm
′ � Ξ′L.

• If (νa) Γ is equal to some (Σ′; Ξ′L J ΞE), with a 6= n(p) then pm � Ξ′L.

We omit the proof, which is an easy consequence of properties of the +
operator on multiplicities.

The following lemma is used when proving that the type system guarantees
uniformity of ω-names:

Lemma A.3.3 Let (Σ; ΞL J ΞE) ` P with pω � ΞL. Then p appears at most
once in P in subject position, and, in case that occurs, P = C[!T.Q] where T ’s
subject is p and C doesn’t bind n(p).

Proof The type system performs the following operations on local multiplic-
ities:

1. Prefix rules add 1 or ω for prefix subjects

2. Prefix rules �-compose the remote behaviour (for objects)

Therefore pω is produced by the type system whenever p is the subject of
a replicated prefix ! (νz̃) a(ỹ).P ′ or ! (νz̃) a〈x̃〉.P ′ (point 1), and when it is a
free parameter of an output (point 2, with the appropriate ω multiplicity in the
channel type).

More than one occurence of a port would result in composition of two non-
zero multiplicities and give p?, so exactly one of the above cases must occur.

Then, a local pω channel usage is preserved by composition (only with types
having p0 on the local side), prefixing (only with ports other than p) and binding
(only of names other than n(p)). 2

We work on a restricted form of simple correctness that does not permit
arbitrary transition sequences:

148 APPENDIX A. PROOFS

Definition A.3.4 (Simple Correctness Predicate) A typed process (Γ;P)
is said locally correct with respect to simple semantics (written good#(Γ;P)) if
it satisfies Definition 3.12.1 whenever µ̃ = ∅.

Then this lemma, together with Subject Reduction, will be used for full
generality:

Lemma A.3.5 (Weakening Preserves Local Correctness)
Let (Γ;P) be a typed process with good#(Γ;P), and Γ′ � Γ. Then good#(Γ′;P ′)
also holds

Lemma A.3.6 (Local Correctness Lemma) If Γ ` P then good#(Γ;P).

Proof
Let Γ ` P , with Γ = (Σ; ΞL J ΞE). The items below corresponds to those

in Definition 3.12.1. We show for the case where µ̃ = ∅, which is generalised
for any transition sequence using subject reduction.

1. is easily shown by induction on the length of the typing derivation.

2. Let P
µ−−→ P ′. We distinguish the cases µ = τ and µ 6= τ :

(a) sub(µ) = p. By Lemma A.1.4, P ≡ P ′ = (νz̃) (G.Q |R) (modulo
replication, and with n(p) 6∈ z̃). By subject congruence, Γ`P ′.
Let ΓQ ` Q, ΓR ` R and obj(G) = x̃. Then, typing P ′ uses (R-
Pre), (R-Par) and (R-Res), resulting in

Γ = (νz̃)
[(
p : σ; J pm0 ∧ p̄m

′
0

)
�
(

; p#(G) J
)
�

!if #(G) = ω (νbn(G))
(

Γ/ depK(G)� σ[x̃]/ (depK(G) ∧ (l ∨ p̄R))�(
;
∧
k∈K

propk(σ,G,m,m′) J

))]
� ΓR (A.60)

In (A.60), m0 must be equal to #(G) or ? in order for the first
composition to be well-defined, so, by Lemma A.3.2, pm � ΞL for
some m 6= 0.

Let Γ+ = (Σ; ΞL J ΞE � p̄?), making Γ+ op well-defined. Set µ′ equal
to µ but with fresh and distinct bound objects z̃′. As z̃′ ∩ dom(Σ) =
∅, Γ+ o p� σ[obj(µ′)] is also well-defined.

(b) µ = τ . Let Γ+ = Γ. Then Γ+ o τ = Γ+ immediately implies

(Γ+;P)
τ−−→ (Γ+;P ′).

3. Let P
µ−−→ P ′ be a transition whose subject port is p with pω � ΞL.

Applying Lemma A.3.3, P contains at most one prefix having p in subject
position, and if there is one it is replicated. By Lemma A.1.4, there is
at least one prefix having p in subject position. So we conclude P ≡
(νz̃) (! (νz̃′)Q |R) with R = a(ỹ).R′ (for p = a) or R = a〈x̃〉.R′ (for

p = ā). The ∃!Q s.t. P
µ−−→ Q condition is then immediately satisfied as

µ must use that prefix, with the objects given by µ.

A.4. PROOFS OF SECTION 7 149

2

The simple correctness lemma is now simply proven composing the above
lemmas:

Let Γ ` P and (Γ;P)
µ̃−−→ (Γ′;P ′).

By the Subject Reduction Proposition, there is Γ′′ such that Γ′′ ` P ′ and
Γ′′ � Γ′. By the Local Correctness Lemma, good#(Γ′′;P ′). By Lemma A.3.5,
good#(Γ′;P ′) as well. Since this is valid for any transition sequence µ̃, Γ |=# P .

A.4 Proofs of Section 7

In this section we prove lemmas associated with structural analysis and the
existential soundness proof.

A.4.1 Subject Transitions (Lemma 7.4.5)

The transition put in communication a lI -labelled guard with a lO-labelled one
in case neither is •, or consumed a lI -labelled (resp., lO-) guard through a
labelled transition, in which case we set lO (resp., lI) to •.

First assume p is the free port p. Then p′ = p.
Let ρ be a runnable and complete strategy with ρoπ 6= ⊥ such that subP (ρ) =

p, and set ρ′ = ρ o π. We need to show that subP ′(ρ
′) = p as well.

As ρ′ 6= ⊥, ρ and π don’t contradict.

1. ρ = l.

Then ρ o π = ρ.

By non-contradiction, either l 6∈ {lI , lO} or the l-tagged guard is replicated,
so the l-guard is still available in P ′ and subP ′(ρ) = subP ′(ρ o π) = p as
required.

2. ρ = π̃. l.

Let π0 = (l0|ρ0) be the first step of π̃.

This case is proven differently depending if π0 matches π.

3. ρ = π̃. l and π0 does not match π.

As π and π0 do not match, by non-contradiction, the l0-guard must still
be available unchanged in P ′ (up to α-renaming).

Let q be subP (l) and q′ be subP ′(l). subP (ρ) and subP ′(ρ
′) are respectively

obtained by applying substP (πi) and substP ′(π
′
i) in sequence from right

to left. As the substitution only acts on free names and p is free, we
either have q = p, or one of the πi did the substitution q 7→ p, because
objP (li)[k] = n(q) and objP (ρi)[k] = n(p), for some index k.

The q = p case happens if and only if q is not bound by any of its prefixes,
which is preserved by the transition as the process in unchanged up to
α-renaming, so p = p′ = p, as required.

Assume instead objP (li)[k] = n(q) and objP (ρi)[k] = n(p), where li binds
q. Then α-renaming preserves the index k and the induction hypothesis
preserves objP (ρi)[k] = n(p), as n(p) is free, so p = p′ = p, as required.

150 APPENDIX A. PROOFS

4. ρ = π̃. l and π0 matches π.

Let l̄0 be such that {l0, l̄0} = {lI , lO}. Then ρ is transformed into ρ′ as
follows: The π0 prefix is dropped, every li (including l) is replaced by
l′i = markl̄0(li) and every ρi (i 6= 0) is replaced by ρ′i = ρi o π. The
transition replaces a sub-process Gl0 .Q by markl̄0(Q){x̃/obj(l0)}, where x̃ is
one of obj(l0), obj(l̄0) and obj(µ), depending on whether G is an input or
an input, and whether l̄0 = • (there may be additional changes in the

process, such as a similar reduction on a sub-process G′
l̄0 .Q′, removal or

expansion of bound names, and keeping a copy of those sub-processes if
they are replicated).

In particular each li (i > 0) both in ρ and in Q get replaced by l′i.

Three cases:

• subP (l) = p, i.e. l’s subject is free. See 5.

• subP (π1. · · · . l) = p, i.e. l’s subject is bound by an input contained
inside G, and substituted to a free port by that input’s communica-
tion partner. See 6.

• subP (π1. · · · . l) = q, i.e. l’s subject is bound but is substituted with
a free port by G’s communication partner. See 7.

5. ρ = π̃. l, π0 matches π, and subP (l) = p.

As in the q = p case of point 3, p is not bound by any of its prefixes.
As the labelled transition system only substitutes bound names we have
subP ′(markl̄0(l)) = p as well, which is still not bound by any of its prefixes
so we get subP ′(ρ

′) = p as required.

6. ρ = π̃. l, π0 matches π, and subP (π1. · · · . l) = p.

Let subP (l) = q. In order to compute subP (π1. · · · . l), one applies all
substP (π1. · · · . πi) one by one with decreasing i until one (say, π1. · · · . πj ,
corresponding to some input guard Gj) substitutes q with p. By hy-
pothesis j 6= 0, n(q) = objP (lj) [k] for some k, sub(lj) is an input and
objP (ρj) [k] = n(p).

Let subP ′(markl̄0(l)) = q′. It might be different from q due to α-renaming
but we have n(q′) = objP ′(markl̄0(lj)) [k] because l is contained in Gj ’s
continuation. As p is free, induction hypothesis applies and objP (ρj) =

objP ′(ρj oπ), so the substitution works like before and subP ′(π
′
1. · · · . l̂) = p,

as required.

7. ρ = π̃. l, π0 matches π, and subP (π1. · · · . l̂) = q ∈ bn(G).

In this case q got substituted to p by π0. This requires (Definition 7.2.1)
π0 to be doubly anchored, which in turn requires (for π0 to match π)
π0 = (l0 |̄l0). substP (π0) is obj(l0) 7→ obj(̄l0).

In the process, Gl0 .Q|G′ l̄0 .Q′ becomes markl̄0(Q{obj(̄l0)/obj(l0)})|markl0(Q′).

Strategy subjects commute with substitution when free: If subP (ρ) = p
then subP{x/y}(ρ) = p{x/y}. In this case subQ|...(π1. · · · . l){obj(̄l0)/obj(l0)} =
p implies submarkl0 (Q{obj(l̄0)/obj(l0)}) | ···(π

′
1. · · · .markl0(l)) = p.

In other words subP ′(ρ
′) = p, as required.

A.4. PROOFS OF SECTION 7 151

Now let p = νp, and let P = (νz̃)P0.

If µ is a τ or an input then p′ = p. If µ is an output, let P0
µ0−−−→ P ′0 be

the intermediate transition prior to the application of (Open) or (New) of the
LTS. Claim: If n(p) = obj(µ0) [k] then p′ = obj(µ) [k]. Otherwise p′ = p.

By Definition 7.2.1, sub(νz̃)P0
(ρ) = (νp) requires subP0

(ρ) = p, otherwise
the binding would be prefixed. Applying the reasoning done above for free p we
get subP0

(ρ) = subP ′0(ρ′) = p.

In case the bound output µ did some α-renaming on z̃ (say, {ỹ/̃z}), we get
P ′ = (νỹ′) (P0{ỹ/̃z}), and subP ′(ρ

′) = (νỹ′) (p{ỹ/̃z}), for some ỹ′ ⊆ ỹ. We have
n(p){ỹ/̃z} ∈ ỹ′ precisely when the condition on µ’s objects given above holds.

Now let p = π̂.νp, where π̂ = (̂l|ρ̂) matches π. Claim: if n(p) ∈ objP (̂l),

p′ = p{obj(µ)/objP (̂l)} satisfies the requirements. Otherwise (n(p) 6∈ objP (̂l)) we

have p′ = νp, modulo α-renaming (done by the transition on (νn(p)) found at
top-level in the process).

The p′ = νp case is proved as part of the more general π̃′.νp later on.
Assume n(p) ∈ objP (̂l) and let subP (ρ) = p.

1. ρ = l, by Definition 7.2.1, can’t have a prefixed subject such as p.

2. ρ = π̃′. l.

Let q = subP (l). As p 6= q, q must be bound by one of its prefixes, say lj .
Two cases: 3. n(q) ∈ bn(lj) and lj is either an output or a singly-anchored
input, or lj ’s continuation binds q. 4. lj is a doubly-anchored input and
n(q) ∈ objP (lj).

3. ρ = π̃′. l. n(q) ∈ bn(lj) and lj is either an output or a singly-anchored
input, or lj ’s continuation binds q.

Following Definition 7.2.1, subP (ρj . · · · . l) = πj .νq, and then all subse-
quent πi (i < j) get added to that bound port, so we get subP (ρ) =
π0. · · · . πj .νq. By hypothesis subP (ρ) = π̂.νp so we conclude j = 0,
π0 = π̂ and p = q.

As π matches π̂, ρ oπ = π′1 . . . l
′
j where π′i = (markl̄0(li)|ρi oπ), l̄0 being l0’s

communication partner according to π.

The process P , as ρ is runnable, contains Gl0 .Q, where Q contains l, and
l’s subject q is free in Q. After the transition (π puts l0 in communication
with l̄0) that part of the process becomes markl̄0(Q){obj(µ)/obj(G)} in P ′.

We made the assumption n(q) = n(p) ∈ objP (̂l) = objP (l0), so subP ′(l) =
q{obj(µ)/obj(G)} = p{obj(µ)/obj(G)}, as required (remember that p = q).

4. ρ = π̃′. l. lj is a doubly-anchored input and n(q) ∈ objP (lj).

The proof of point 6 on page 150 (for p free) applies here as well: subP (l) is
replaced by π̂.νp which, by induction hypothesis, becomes q{obj(µ)/obj(G)}
after the transition.

Now let p be the bound sequence π̃∗.νp, such that π̃∗ either has more than
one step, or has a single step π∗0 that either does not match π, or is such that
n(p) 6∈ objP (l∗0). Then p′ = poπ, where o is defined as in Definition 7.4.2 and mark
leaves bound names νp unchanged (up to α-renaming — the last π∗j uniquely
identifies in the process a binder of n(p), and if the transition α-renames n(p),
the corresponding change should be applied in p′).

152 APPENDIX A. PROOFS

1. ρ = l is contradictory as before as its subject can’t be p.

2. ρ = π̃. l

Similarly to the p = π̂. l case, we distinguish whether sub(l) gets bound (in
which case ρ = π̃∗. πj+1. · · · . l with πj = π∗j binding subP (l) where πj can
only be a doubly-anchored input if its strategy is ρj = •), or substituted
(in which case the induction hypothesis applies as usual).

We assume the former, as the latter has been covered already.

3. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 doesn’t match π.

As sub(ρ) binds p rather than substituting it, subP (l) = p. As π doesn’t
match π0 but doesn’t contradict ρ, the l0-guard G and its continuation Q
are left unchanged by the transition, up to α-renaming, in particular the
events li are left as is. Let subP ′(l) = p′.

As π0 and π do not match, ρ o π = ρ′ = π̃′. l where π′i = (li|ρi o π).

As Gl0 .Q is preserved in P ′, p′ is not bound by any prefix π′i with i > j.
It is bound (not substituted) by π′j because ρ′j = • ⇐⇒ ρj = • and
anchoring is preserved.

The subject subP ′(ρ
′) is therefore p′ = π′0. · · · . π′j .νp′, as required.

4. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a doubly-
anchored input. π0 matches π. By ρ-runnability P contains a process
Gl0 .Q that becomes Q′ = markl̄0(Q){obj(µ)/obj(G)} (as in point 3 of case
p = νp on page 151).

As in the previous case, p = subP (l) and let p′ = subP ′(markl̄0(l)).

By hypothesis on p, at least one of these three conditions hold:

• j > 0. See 5.

• π∗0 doesn’t match π. Directly contradicts “π0 matches π”.

• n(p) 6∈ bn(l∗0). See 6.

5. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 matches π. j > 0.

By the guarding constraints given by runnability, lj is contained in Q
and becomes markl̄0(lj). As p is bound by lj in Q, p′ must be bound
by l′j = markl̄0(lj) in Q′, and so subP ′(π

′
j . π
′
j+1. · · · . l′) = νp′, so we get

subP ′(ρ
′) = subP ′(π

′
1. · · · . π′j . · · · . l′) = π′1. · · · . π′j .νp′, as required.

6. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 matches π. n(p) 6∈ bn(l∗0).

As the j > 0 case got covered in the previous case, let j = 0, i.e. p = π0.νp
and subP (π1. · · · . l) = p. As n(p) 6∈ bn(l0), we must have Q = (νz̃)Q0

with n(p) ∈ z̃ and p free in Q0.

After the transition, Gl0 .(νz̃)Q0 becomes markl̄0((νz̃′)Q0{z̃
′
/̃z}){µ̃/obj(G)},

with p′ = p{z̃′/̃z} (in other words the transition α-renames z̃ to z̃′). As
p is free in Q0, p′ is free in Q0{z̃

′
/̃z}, so we get subP ′(ρ

′) = νp′. As π0

matches π, π0.νp
′ o π = νp′ so we are done.

A.4. PROOFS OF SECTION 7 153

A.4.2 Completeness of Strategies (Lemma 7.4.6)

The construction of ρ from ρ′ is the same in all cases so we give it first.

Let π = (lI |lO). The transition transforms a process sub-term GI
lI .QI

into Q′I = marklO (QI){obj(µ)/obj(GI)} and/or GO
lO .QO into Q′O = marklI (QO)

(modulo α-renaming). The “and/or” is resolved by checking if µ is an input
(only produce Q′I), an output (only Q′O) or a τ (both Q′I and Q′O).

Let ρ′ = π′1. π
′
2. · · · . ln with πi ∈ {(l′i|ρ′i), (l′i|ρ′i]}.

If l′1 occurs in Q′O (respectively, Q′I), then for all i, l′i = marklO (li) (respec-
tively, l′i = marklI (li)), for some li. if l′1 occurs in neither, set li = l′i for all
i.

If l′1 occurs in Q′I , set π0 = π. If l′1 occurs in Q′O, set π0 = π̄. Otherwise (to
avoid a multiplication of otherwise similar cases) we’ll say π0 is “neutral” in the

sense that π0. ρ
def
= ρ.

Apply this ρ′ 7→ ρ transformation inductively (for the same transition µ and
step π) to obtain ρi, for all i s.t. ρ′i 6= •. The remaining ρi are filled in for
increasing values of i:

Let ρ′i = •. If subP (π0. π1. · · · . li) is a free port, set ρi = • as well. Otherwise
(the steps from π1 to πi−1 can’t bind subP (li) as Q′I and Q′O were obtained from
QI and QO by renaming that avoids capture), GI (or GO) binds that port. Let
q be such that obj(GI) [q] = subP (li) (respectively, obj(GO) [q] = subP (li)).
Set ρi = π̄ [q] (respectively, π [q]). Note that in both cases ρi is of the form
(•|l) [q] with l ∈ {lI , lO}.

The strategy ρ is then equal to π0. π1. · · · . ln where πi = (li|ρi) for i > 0.

In case ρ′ was of the form (•|ρ′0) [p], transform ρ′0 into ρ0 following the above
procedure and set ρ = (•|ρ0) [p].

The reader may want to verify that the above construction implies ρ oπ = ρ′

in all cases.

To verify guarding constraints on ρ for P , assume l′1 is neither in Q′I nor in
Q′O. Then the sequence l′1, . . . , l

′
n has each event guard the next in P ′, with l′1

at top-level, and therefore the sequence l1, . . . , ln also has each event guard the
next in P with l1 at top-level (remember that in this case ∀i : li = l′i. If l′1 is in
Q′I , the l′i sequence similarly satisfies guarding requirements with l′1 at top-level
in P ′ and therefore in Q′I . By the definition of Q′I , l1 is at top-level in QI and all
li+1 with i ≥ 1 are guarded by li. As the first step of ρ is π0 = π = (lI |lO) and
QI is the continuation of GI

lI , l0 = lI is at top-level and guards l1, as required.
The Q′O case is similar, swapping lI and lO.

We now show a p′ 7→ p transformation that is consistent with ρ′ 7→ ρ and
satisfies the lemma requirements.

We treat all possible cases one by one, subdividing cases as needed. Each
point starts with the hypotheses for the case followed by the proof for that case.

We first distinguish if p′ is free (case 1) or bound (case 6).

1. p′ is a free port p′.

By hypothesis if µ is an input its objects must be fresh. If µ is an output,
its bound objects must not be in fn(P), because of the side condition of
the (Par) LTS rule. Therefore, if n(p′) ∈ bn(µ) then n(p′) is not free in
P and p must be bound (Case 2). Otherwise p = p′ as well, as shown in
Case 5.

154 APPENDIX A. PROOFS

2. p′ is a free port p′. n(p′) ∈ bn(µ).

Let l be such that (•|l) ∈ {π, π̄} (we have π = (•|lO) in case µ is an output
and π = (lI |•) in case µ is an input. µ = τ is excluded as bn(µ) 6= ∅.)

Let q be such that p′ = obj(µ) [q] and set p = obj(G) [q] (where G is the
prefix in P consumed by µ, i.e. GI if µ is an input, GO otherwise).

Then p = (l|•).νp satisfies the requirements as we show now.

Let ρ′ = π′1. · · · . l′n be a strategy such that subP ′(ρ
′) = p′, and let ρ be

the strategy obtained as described earlier.

As p′ is free, we either have subP ′(l
′
n) = p′ (case 3) or subP ′(l

′
n) = p0 and

one of the substP ′(π
′
i) substitutes n(p0) to n(p′) (case 4).

3. p′ is a free port p′. n(p′) ∈ bn(µ). subP ′(l
′
n) = p′.

As p′ is fresh, ln must appear in the continuation Q (one of QI and QO)
of G and l′n in the corresponding process term Q′ in P ′. So the ρ′ 7→ ρ
construction implies ρ = (l|•). π1. · · · . ln and subp(π1. · · · . ln) = p. n(p)
is bound in G as it is bound in the transition label, so subP (ρ) = (l|•).νp,
as required.

4. p′ is a free port p′. n(p′) ∈ bn(µ). subP ′(l
′
n) = p′0 and substP ′(π

′
j) substi-

tutes n(p′0) to n(p′).

So objP ′(l
′
j) [q] = p′0 and objP ′(ρ

′
j) [q] = p′ for some q. By induction

hypothesis there is ρj satisfying the lemma conditions (where ρ′ and ρ in
the statement stand for ρ′j and ρj), so objP (ρj)q = p.

Let subP ′(l
′
n) = p0 (which may be distinct from p′0 in case α-renaming

occurred). Then n(p0) is not bound by any of the prefixes corresponding
to πi with j < i < n (as that property is preserved by α-renaming and
capture-avoiding substitution). For the same reasons n(p0) is bound by
lj , so subP (ρ) = p0{objP (ρj)/objP (lj)} = p, as required.

Note that the proof of this case works every time a subject is captured
by a subst(πi)-substitution so in the following cases we assume that no
substP ′(π

′
i) captures subP ′(l

′
n).

5. p′ is a free port p. n(p) 6∈ bn(µ).

In this case p = p′ = p satisfies the requirements (we write p instead of p′

because there is no renaming involved but the reader may prefer to write
p′ = p′ and p = p, with of course p = p′).

Let ρ′ = π′1. · · · . l′n be such that subP ′(ρ
′) = p. So for all 0 < i < n, l′i

does not bind n(p). This is preserved by renaming so for all 0 < i < n,
li does not bind n(p) and we get subP (π1. · · · . ln) = p. As µ’s input
or bound objects are fresh, they are necessarily distinct from n(p), so
subP (ln) = subP ′(l

′
n) and either l1 is at top-level (in which case we’re

done) or l1 is guarded by one of lI and lO which, by hypothesis, doesn’t
bind p, so subP (ρ) = subP (π1. · · · . ln) = p, as required.

6. p′ is bound.

Examining the proof of Lemma 7.4.5, the only case in which p′ = subP ′(ρ
′)

is bound requires p = subP (ρ) being bound as well, and satisfy p o π = p′.

A.4. PROOFS OF SECTION 7 155

Fix p′ = π′1. · · · . π′j .νp′. Then p = π0. · · · . πj .νp satisfies the require-
ments, where p 7→ p′ corresponds to any α-renaming occurring in the

P
µ;π−−−→ P ′ transition and π0 is either “neutral” (when µ = τ , p is really

π1. · · · . πj .νp) or a step (l|•) ∈ {π, π̄}, just like described in the ρ′ 7→ ρ
mapping at the beginning of this proof. Note that p o π = p′.

Let ρ′ be a strategy with subject p′ and define π′i, l
′
i, ρ
′
i and their coun-

terparts without a tick ′ as in all previous cases. Note that the π′i for
i ≤ j necessarily coincide with the ones occurring in p′, by the definition
of subP ′ . As in the previous cases π′j is the step with largest j that binds
p′, and we assume substP ′(π

′
j) doesn’t capture it (if it does, refer to step

4). All this properties are preserved by renaming and marking, so πj is
the step with largest j that binds p, and substP (πj) doesn’t capture it. So
we immediately get subP (ρ) = π0. π1. · · · . πj .νp = p, as required.

A.4.3 Runnability Safety (Lemma 7.4.8)

First of all, Γ′ is elementary by definition of the ↘ relation.
We first prove Γ′ is consistent before proceeding to completeness. We prove

the lemma just for subjects, as the proof for targets is identical, just replacing
subP by trgk,P everywhere (and is valid, by virtue of target function commuting
with substitution).

Let Γ’s local dependency network be sk / ε : ρ. Let π = (lI |lO) be the

step used to prove (Γ;P)
µ−−→↘ (Γ′;P ′) following Definition 7.4.3. Then that

transition put in communication a lI -labelled guard with a lO-labelled one in
case neither is •, or consumed a lI -labelled (resp., lO-) guard through a labelled
transition.

The strategy of sk in Γ′ is ρ′ = ρ o π. We assume ρ′ 6= ⊥ otherwise Γ′ =
> which is vacuously consistent. This implies that π doesn’t contradict ρ.
By hypothesis, ρ is runnable. We show by induction on ρ’s structure that all
conditions in Definition 7.2.3 are preserved in ρ′. By induction hypothesis, the
sub-strategies of ρ′ are runnable.

There is a large number of cases that need to be proved separately.

1. ρ = s.

By runnability it must be at top-level in P . If neither s ∩ {lI , lO} = ∅
(seeing the sum s as the set of its terms) then ρ′ = s and s was not
consumed by µ, so it still is at top-level in P ′. If s ∩ {lI , lO} = l then, by
non-contradiction, s must be replicated in P and s = l, so it remains at
top-level in P ′ no matter what µ is doing.

2. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s.

Let p = subP (π̃. l̂) and p′ = subP ′(π̃
′. l̂′). Then:

• l̂ guards s.

• If ρ̂ = •: p = p for some p and Γ↓p. See 3.

• If ρ̂ 6= •: subP (ρ) = p̄. See 4.

The first condition, that the l̂ guards s is proved differently depending if
π0 matches π (point 6) or not (point 5).

156 APPENDIX A. PROOFS

3. ρ = π̃. (̂l|•). s or ρ = (̂l|ρ̂). s. p = p for some p. Γ↓p.
By Lemma 7.4.5, p′ = p as well, and, by non-contradiction with s, Γ′ ↓p
as well.

4. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s. ρ̂ 6= •. subP (ρ) = p̄.

By Lemma 7.4.5, subP (ρ̂) = p̄ implies subP ′(ρ̂ o π) = p′.

Let π0 = (l0|ρ0) be the first step of π̃, (or be (̂l|ρ̂) in case π̃ is empty).

5. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s. π0 does not match π.

ρ′ is equal to ρ in the li, and the ρi are replaced by ρi oπ. The sequence of li
is therefore preserved by transition, and, by non-contradiction, l0 and the
process it guards is preserved by µ. In particular, the l̂ guards s condition
is preserved.

6. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s. π0 matches π.

Let l̄0 be such that {l0, l̄0} = {lI , lO}. Then ρ is transformed into ρ′ as

follows: The π0 prefix is dropped, every li (including s and, if applicable, l̂)
is replaced by l′i = markl̄0(li) and every ρi (i 6= 0) is replaced by ρ′i = ρi oπ.
The transition replaces a sub-process Gl0 .Q by markl̄0(Q){x̃/obj(l0)}, for

some x̃. In particular every li (i > 0), including l̂ and s, is replaced in
both Q and ρ by markl̄0(li). The two following cases cover the two possible
forms of ρ.

7. ρ = π̃. (̂l|ρ̂). s. π0 matches π.

l̂ guarding s in Q implies that l̂′ guards l′ in Q′, as required.

8. ρ = (̂l|ρ̂). s. π̂ matches π.

ρ′ = l′. As l̂ guards s in P , s is at top-level in Q and l′ is at top-level in
Q′, so at top-level in P ′ as well, as required.

We now show that completeness is preserved by the transition. Let Φ =∨
i∈I Φi. As o is a logical homomorphism, Φ′ =

∨
i∈I Φ′i where Φ′i = Φi o π. We

set once more π = (lI |lO).

A key part of proving that is the following corollary of Lemma 7.4.6: Let ρ′

be a selection strategy for P ′. Then there is a selection strategy ρ for P such
that ρ o π = ρ′.

The construction of ρ from ρ′, µ and π is given in the proof of Lemma 7.4.6.
We show that ρ is runnable if ρ′ is. The guarding constraints have already
been shown in the lemma but we still have to show that (li|ρi)-steps satisfy the
complementarity constraint when ρi 6= •, and that (li|•)-steps satisfy the free
name requirements.

We work by induction on the weight of ρ′.

Let ρ′ = π′1. · · · . l′n (for a selection strategy whose final step is a pair the
proof is the same, just ignoring the l′n and requiring n > 1). Let ρ = π0. π1 · · · . ln
be obtained from ρ′ as given in the proof of Lemma 7.4.6.

We treat differently the “base case” n = 1 (i.e. ρ′ = l′1, Case 1) and the “step
case” n > 1 (Case 2).

A.4. PROOFS OF SECTION 7 157

1. ρ′ = l′1.

If π0 is “neutral”, ρ = l1 and there’s nothing to show (we already showed
as part of Lemma 7.4.6 that l1 is at top-level in P).

Otherwise ρ ∈ {(lI |lO), (lO|lI)}. If neither is •, µ = τ and the transition
was proved from the (A-Com)-rule of the LTS which requires the sub-
jects of communicating guards to be complements, i.e. subP (lI) = a and
subP (lO) = ā for some a so we’re done.

If π0 = (l|•) then µ 6= τ has subject p = subP (l) and Γ′ being well-defined
requires Γ o p being defined as well, from the definition of the o operator,
i.e. p is observable, as required.

2. ρ′ = π′1. · · · . l′n, n > 1.

Following the usual naming convention we have π′n−1 = (l′n−1|ρ′n−1). We
treat ρ′n−1 = • (Case 3) and ρ′n−1 6= • (Case 6) differently.

3. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 = •.
As ρ′ is runnable, subP ′(π

′
1. . . . l

′
n−1) is free in P ′ (let’s call it p′) and

Γ′-observable.

Applying Lemma 7.4.6, p = subP (π0. π1. . . . ln−1) is either free and equal
to p′ (Case 4), or is bound and equal to (l|•).νp for some l given by π,
and p (Case 5).

4. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 = •. p is a free port p.

As shown in Lemma 7.4.6 we have p = p′ and p is necessarily observable
in Γ as µ is either τ (in which case Γ = Γ′) or an input that doesn’t bind
n(p).

5. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 = •. p = (l|•).νp.
As shown in Lemma 7.4.6, p bound can only become p′ free if µ 6= τ . So
p = objP (l) [q] for some q and p′ = p′ = obj(µ) [q].

The ρ′ 7→ ρ-construction sets ρn−1 = (•|l) [q̄] in this case. We then have
subP (ρn−1) = (l|•).νp̄ = p̄, as required.

6. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 6= •.

By runnability, subP ′(ρ
′
n−1) = p′. Having p = subP (π0. · · · . ln−1) =

p, noting that ρn and π0. · · · . ln−1 have been obtained from ρ′n−1 and
π1.
′ · · · . l′n−1 following the same ρ′ 7→ ρ-construction as in Lemma 7.4.6

we have subP (ρn−1) = p̄, as required.

A.4.4 Strategy Application (Lemma 7.4.9)

The conclusion can be obtained in three different ways:

1. (Γ;P) is immediately correct.

2. (Γ′;P ′) is immediately correct.

3. (Γ′;P ′) is not immediately correct but has a weight strictly less than
(Γ;P).

158 APPENDIX A. PROOFS

Let Γ’s local dependency network be sk / ε : ρ. We proceed by induction on
wt(ρ), and will have to consider all three cases above when using the induction
hypothesis.

If ρ = s =
∑
i li then s is at top-level in P , i.e. P ≡ (νã) (

∑
iGi

li .Qi | R),
where

∑
i sub(Gi) = s. By consistency of s, trgk,P (s) = sk, and by definition

of target functions (Definition 7.2.2), the k-elementary rules type
∑
iGi

li .Qi
as sk. By definition of elementary rules (Definitions 4.4.1 and 4.4.3), and k
being existential (so the composition with R preserves correctness), goodk(s/
>, (Γ;P)), so Γ is immediately correct.

If ρ = (ρ0|•) [s′], let p0 = sub(ρ0). Set Γ0 to Γ but with local component
p0k / ε : ρ0. As Γ is consistent and complete, so is Γ0, and the induction
hypothesis applies. Case 1: Γ0 is immediately correct so p0 is at top-level and

there is a transition (Γ;P)
µ−−→ (Γ′;P ′) with sub(µ) = p0 and, by Definition 7.2.1

and consistency of Γ, obj(µ) [s′] = s, so Γ o µ drops activeness on s (See the
definition of Γoµ in Section 6.2), rendering (Γ′;P ′) immediately correct. Cases 2

and 3: there is a transition (Γ0;P)
µ−−→ (Γ′0;P ′) satisfying the requirements in

the Lemma statement. Then (Γ;P)
µ−−→ (Γ′;P ′). Let the local component of

Γ′0 be p0k / ε
′ : ρ′0. Then the local component of Γ′ is sk / ε

′ : (ρ′0|•) [s′]. As
(by induction hypothesis) wt(ρ′0) < wt(ρ0), wt((ρ′0|•) [s′]) < wt((ρ0|•) [s′]), as
required.

Now assume ρ = (l0|ρ0). ρ1 with ρ0 6= •. Let subP (l0) = p0. Then ρ0 is a
runnable strategy for p̄0 and the induction hypothesis applies. Case 1: p̄0 is

at top-level in P ′ so there is a transition (Γ;P)
µ′−−−→ (Γ′0;P ′0) where µ′ has p̄0

in subject position. Applying the (Com) rule of the LTS the µ′ transition can
be replaced by a τ -transition additionally consuming l0, let that transition be

(Γ;P)
τ−−→ (Γ′;P ′). Then the local component of Γ′ is sk / ε : ρ1. If p̄0 is an

object of the µ′ transition, p̄0k will be provided by the environment and one can
do (after µ′) one labelled transition consuming l0, like in the ρ = s case above,
and again we’re back to the above case.

Case 2 and case 3: Let Γ0 be Γ but with local component p̄0k / ε : ρ0. By

induction hypothesis there is a transition (Γ0;P)
µ−−→ (Γ′0;P ′) as in the Lemma

statement. Let (Γ;P) =
µ−−→ (Γ′;P ′) be the corresponding transition (i.e. just

like Γ′0 = Γ0 o µ, Γ′ = Γ o µ). The local component of Γ′0 being p0k / ε : ρ′0, we
have sk / ε : (l0|ρ′0). ρ1 as local component of Γ′.

If ρ = (l0|•). ρ1, let (Γ;P)
µ−−→ (Γ′;P ′) be a transition consuming l0. Then

p’s strategy in Γ′ is ρ1, which has a weight lower than ρ. By runnability of ρ
and the definition of the depP operator, p̄0k must provided by the environment.

The ρ = π̃1 (π̃2)δ case is essentially identical to the above ones, by focusing
on the π̃1 part and leaving the rest unchanged.

A.4.5 Completeness and Correctness (Lemma 7.4.10)

As µ̃0 is empty, Γ0 ↘ Γ′0, so (Γ0;P0) being consistent and complete implies
(Γ′0;P0) is consistent and complete, and Γ′0 has a weight lower or equal to that
of Γ0.

By repeated application of Lemma 7.4.8 on the sequence (Γi;Pi)
µ̃i−−−→↘

(Γ′i;P
′
i), if (Γi;Pi) is consistent and complete then (Γ′i;P

′
i) is consistent and

complete as well, and Γ′i has a weight smaller than or equal to wt(Γi).

A.4. PROOFS OF SECTION 7 159

The strategy f is defined following Lemma 7.4.9, producing, for consistent
and complete but not immediately correct typed processes (Γ′i;P

′
i), transitions

(Γ′i;P
′
i)

µ−−→ (Γi+1;Pi+1), such that wt(Γi) > wt(Γi+1).
For all i < j: wt(Γ′i) > wt(Γ′j). As weight can’t be negative, there is a value

of n as in Definition 5.2.6 on page 54 of at most wt(Γ′0) such that i > n implies
(Γi;Pi) is immediately correct.

A.4.6 Reduction and Composition Preserve consistency
(Lemmas 7.5.6, 7.5.7)

We show that all four transformations (7.5), (7.6), (7.7) and (7.8) given in
Definitions 7.5.1 and 7.5.3 preserve runnability.

Note that a strategy of the form s can’t be altered or produced by the rules
because it doesn’t match any of them, on the left or right of the 7→ symbol. So we
only consider sub-strategies of the form π̃. s or π [s′], and show that the label-
guarding property is preserved and subjects of newly introduced (l|ρ)-pairs are
complements, as required. Additionally we show that (sk · · · : ρ) 7→ (sk · · · : ρ′)
implies sub(ρ) = sub(ρ′), i.e. sub(ρ′) = s as is required for consistency.

(7.5) Calling the “main event sequence” of a strategy (l0|ρ0). (l1|ρ1). · · · . s
the sequence (l0, l1, . . . , s), runnability requires l0 to be at top-level and every
li with i < n to guard li+1 (s in case i = n − 1). That sequence is preserved
by rule (7.5). Secondly the rule introduces a new pair (l|ρp). sub(π̃. l) = p̄
by side-condition of the rule and sub(ρp) = p by hypothesis, which completes
the runnability proof. As the rule only replaces the ρ-component of a singly-
anchored step and sub doesn’t depend on such components, the subject of the
resulting strategy is unchanged.

(7.6) As in the previous case the main event sequence is preserved by the
transformation, and the complementarity of l and ρp is shown as in the previous
case. As far as the subject is concerned, sub(π̃ ρ) = sub(ρ), and ρ is the exact
strategy prior to the transformation so we are done.

(7.7) The left hand side of the symbol is runnable because both ρp and π̃. l
are runnable, by hypothesis. The subject is preserved because the right hand
side of is the strategy prior to transformation.

(7.8) the pR annotated dependency statement being consistent by hypoth-
esis, (ρp|•). φ is consistent, and therefore (ρp|•). φ [s′] is runnable. Replac-
ing that statement by (ρp|ρ0). φ [s′] preserves runnability, as sub(ρ0) = p̄ and
sub(ρp) = p. The subject of the strategy prior to transformation is obj(ρ0) [s′].
The subject of φ [s′] is obj(ρp) [s′], so the subject after transformation is

obj(ρp) [r] subst((ρp|ρ0)) = obj(ρp) [s′] {obj(ρ0)/obj(ρp)} = obj(ρ0) [s′]

as required.
We now prove the second lemma, composition preserves consistency:
Following Definition 4.2.6 on page 35:
The first step simply combines into a single behavioural statement strategies

from Γ1 and Γ2. As consistency of a statement is equivalent to runnability of
all liveness strategies it contains, consistency of both ΞLi immediately implies
consistency of ΞL1�ΞL2, except the observability requirement on (ρ|•)-steps, as
sub(ρ) being observable in one Γi doesn’t imply it being observable in Γ1 � Γ2.
Note however that those strategies violating the observability requirement all

160 APPENDIX A. PROOFS

have dependencies weaker or equal to depK(ρ), by consistency of behavioural
statements.

The second step performs a number of dependency reductions which, by
Lemma 7.5.6, preserve consistency of the strategies, still disregarding the ob-
servability requirement.

Finally, the third step of Definition 4.2.6 removes statements depending on
non-observable resources, thereby dropping all strategies that violated the ob-
servability requirement, so that Γ1�Γ2 is consistent, now including the observ-
ability constraints.

A.4.7 Closure Completes (Lemma 7.5.10)

Let P and Γ be as in the statement, let
∨
i∈I Φi be the local component of

close (Γ).

We show by induction on the size of a choice set ρ̃ that ∃i ∈ I s.t. Φi doesn’t
contradict ρ̃, i.e. Φ is complete.

The base case (ρ̃ = ∅) is immediate — if the choice set is empty it can’t
contradict any Φi.

Fix a choice set ρ̃. Let I0 ⊆ I be the set of i such that Φi doesn’t contradict
ρ̃. By induction hypothesis I0 6= ∅. Let ρc be a selection strategy such that
ρ̃∪ {ρc} is a choice set according to Definition 7.3.4 (i.e. ρc is runnable, doesn’t
contradict any ρ ∈ ρ̃ and all proper sub-strategies of ρc are in ρ̃). We show
that there is a non-empty subset I ′0 ⊆ I0 such that j ∈ I ′0 implies Φj doesn’t
contradict ρc.

Let ı̂ ∈ I0 be such that Φı̂ contradicts ρc, and specifically let (sk / ε : ρ) � Φı̂
be such that ρ contradicts ρc. If there is no such ı̂ then I ′0 = I0 and we’re done.

As all sub-strategies of ρc are in ρ̃ and ı̂ ∈ I0, Φı̂ doesn’t contradict any
sub-strategy of ρc.

Let ρc = π̃c. (l|ρ̂c). Following Definition 7.3.3 there is a sequence of steps
π̃. (l|ρ̂) contained in ρ such that π̃ matches π̃c, and ρ̂ doesn’t match ρ̂c. Let q =
sub(π̃. l). By runnability of ρ (by hypothesis Γ is consistent) and ρc, sub(ρ̂) =
sub(ρ̂c) = q̄ (unless ρ̂ = • or ρ̂c = •).

By pre-completeness of Φ (first point in Definition 7.5.9), q̄R/ εq : ρq. φq � Φi
where ρq is a precursor of ρ̂c. Moreover (second point in Definition 7.5.9), there
is a precursor ρ0 of ρ where (l|•) replaces (l|ρ̂) and such that (sk / ε0 : ρ0) � Φi.

Applying Definition 7.5.3, Φi ↪→ Φi ∨ Φ′i where Φ′i is obtained from Φi by
repeatedly applying the transformations

• π̃. (l|•). ρ2 7→ π̃. (l|•) π̃. (l|ρq). ρ2 and

• (•|π̃. l) [s′] 7→ (•|π̃. l) (ρq|π̃. l). φq [s′].

As ρq is a precursor of ρ̂c, Φ′i ↪→ Φ′i ∨ Φ′′i where Φ′′i is obtained from Φ′i by
further replacing ρq by ρ̂c in the rules above.

As Φ is closed, Φ ∼= Φ ∨ Φ′i ∨ Φ′′i , so there is j ∈ I such that Φj ∼= Φ′′i . As
Φi doesn’t contradict ρ̃ and Φj was obtained from Φi by moving sub-strategies
around, Φj doesn’t contradict ρ̃ either so we have j ∈ I0. By construction Φj
doesn’t contradict ρc, so j ∈ I ′0 and therefore I ′0 can’t be empty.

A.4. PROOFS OF SECTION 7 161

A.4.8 Annotated Type System Soundness (Lemma 7.5.13)

The proof of the Lemma proceeds by induction on the proof sequence: Assuming
for each rule that the typings in its assumptions are consistent and complete, we
show that the typed process produced by the rule is consistent and complete as
well. Rules (R-Nil) and (R-Res) are trivial, so we focus on (R-Par), (R-Sum)
and (R-Pre).

Consistency of (R-Par) strategies. If a strategy is consistent in Pi then it
is also consistent in P1 |P2, so this case follows directly from Lemma 7.5.7

Completeness of (R-Par) strategies. Assume both Γi are complete and pre-
complete for the corresponding Pi. Let P = P1 |P2. Let

∨
j∈J Φj and

∨
k∈K Φk

respectively be the local behavioural statements of Γ1 and Γ2. As � is a logical
homomorphism,

∨
j∈J Φj �

∨
k∈K Φk =

∨
j∈J,k∈K(Φj � Φk) is Γ1 � Γ2’s local

behavioural statement before the closure operator is applied.
Let ρ̃ be a choice set. As both Γi are pre-complete there are j ∈ J and

k ∈ K such that both Φj and Φk are pre-complete with respect to ρ̃.
We show that the three points in Definition 7.5.9 are satisfied by Φ′ = Φj�Φk

with respect to ρ̃:

• As all liveness strategies in Φ′ originate from Φj and Φk which are pre-
complete (with respect to ρ̃) by hypothesis, strategies in Φ′ don’t self-
contradict.

• Let ρ = π1. · · · . ln be a strategy with subP (ρ) = p. We construct a
precursor ρ′ of ρ such that subPi(ρ

′) = p for some i ∈ {1, 2}.
Reasoning by induction, for all ρi 6= • there is a ρ′i that is runnable in one
of the Pi

As ρ is runnable ln must either be contained in one of P1 and P2. Assume
it is in P1, the proof for P2 being identical but swapping all 1 and 2.

Let j < n be the largest number such that ρj 6= • and ρ′j is not runnable
in P1 (i.e. it is runnable in P2). If there is no such j we are done.

Otherwise we give a procedure that transforms ρ into a precursor ρ̂ that
is either P1- or P2-runnable, or that is such that j strictly decreases. As
j must be positive and finite, applying this procedure a finite number of
times will result in a P1- or P2-runnable precursor of ρ.

If π′j substitutes p′ = subP1(π′j+1. · · · . ln) by p (i.e. there is q such that
objP1

(lj) [q] = p′ and objP2
(ρ′j) [q] = p) then set ρ̂ = ρ′j [q] which is, by

hypothesis, P2-runnable, so we’re done.

In all other cases, ρ′j is not used to compute subP (ρ) and it is safe to
replace ρ′j by • to get ρ̂.

We now have a precursor ρ′ of ρ that is Pi-runnable. So, as by hypothesis
Φj (this is for i = 1, take Φk if i = 2) is pre-complete for Pi with respect
to ρ̃ and therefore contains a statement pR / ε : ρ0. φ where ρ0 is a pre-
cursor of ρ′ (and therefore of ρ as well). By definition of the � operator
on behavioural statements, that exact same statement pR / ε : ρ0. φ is
contained in Φ′ as well, as required.

• Assume Φ′ contains an annotated liveness statement pk / ε : ρ2 and let
ρ1 be a precursor of ρ2. Then, applying � backwards, one of Φi contains

162 APPENDIX A. PROOFS

the same statement, and as it is pre-complete with respect to ρ̃, contains
a statement pk / ε

′ : ρ0 for some precursor of ρ0. Applying � back, the
same statement pk / ε

′ : ρ0 is contained in Φ′, as required.

As this holds for any choice set ρ̃,
∨
j Φj �

∨
k Φk is pre-complete. So, by

Lemma 7.5.10 Γ1 � Γ2 is complete.
Consistency of (R-Pre) strategies. The typed process produced by this rule

contains strategies in four places. The “l” strategy of local liveness is trivially
runnable and has dependency>. The local responsiveness strategy only contains
strategies of the form • so it is trivially consistent as well. Strategies of remote
behaviour are all of the form (•|l) [p] so they are runnable, and have dependency
depK(G)∧ (depK(G)∧ p̄R) which is equivalent to the declared depK(G)∧ p̄R. Fi-
nally, for the last factor (continuation (l|•).Γ/depK(G)), consider a dependency
statement sk / ε0 : ρ in Γ. After prefixing and adding a dependency, it becomes
sk / (ε0 ∧ depK(G)) : ((l|•). ρ). •-steps being always runnable, ρ’s runnability
is preserved. Then (taking P ′ = Gl.P) depP ′((l|•). ρ) = depK(G) ∧ depP ′(ρ) =
depK(G) ∧ depP (ρ), so depP (ρ) � ε0 (which holds as Γ is consistent) implies
depP ′((l|•). ρ) � (ε0 ∧ depK(G)) which is what we needed. As all components
are consistent, by Lemma 7.5.7, their composition also is.

Completeness of (R-Pre) strategies. As the composition of every type factor
will perform a closure it is enough, by Lemma 7.5.10, to show that the type is
pre-complete before the closure is performed. Every event in continuation is
provided by the last factor. The subject of G has a strategy provided by the
local responsiveness factor, and its objects have responsiveness provided by the
remote behaviour factor. However please see the note at the end of this section
in case G is replicated.

Consistency of (R-Sum) strategies. The strategies for the individual guards
have length one and are therefore always runnable. The strategies in the compo-
nents of the sum are assumed to be runnable by the premise (Σi; ΦLi J ΞEi) `′K
Gi

li .Pi and the induction hypothesis.
Completeness of (R-Sum) strategies. Let ρ̃ be a choice set for the process

P =
∑
i∈I Gi

li .Pi. By the non-contradiction condition, there must be i ∈ I such
that any ρ ∈ ρ̃ is either li or of the form (li|•). ρ0, where ρ0 is a selection strategy

for Pi. Now assume some transition sequence P
µ̃−−→ P ′ does not contradict

ρ̃. Because of the structure of P , the first transition in µ̃ must be a labelled
transition consuming one guard Gi′ , which performs the choice li′ . Since that
transition does not contradict ρ̃, we must have i = i′, so completeness of the
type for that transition sequence and the choice set ρ̃ follows, by the induction

hypothesis, from completeness of ΦLi for the transition sequence Gi
li .Pi

µ̃−−→ P ′

and the choice set ρ̃.

Appendix B

Notation Index

The numbers between brackets indicate the page in which the item is first de-
fined.

B.1 Meta-variables

a, b, c, d — channel names
C — process context
G — guards
i — indexes
I — indexing sets
k — properties
K — set of properties
l — events
l — extended events
m — multiplicities
p, q — ports
P , Q — processes
p — extended ports
s — branching
x, y, z — more channel names
x, y — extended names
α, β, γ — resources
Γ — process types
δ — liveness strategy continuation
∆ — Γ, Ξ or ε
ε — dependencies
φ — responsiveness strategies
Φ — annotated behavioural statements
µ — transition labels
π — liveness strategy step
ρ — liveness strategies
σ — channel types
ξ — channel type behavioural statements (with parameter numbers instead

of names)

163

164 APPENDIX B. NOTATION INDEX

Ξ — behavioural statements

B.2 Processes

0 — idle process (14)

a〈x̃〉 — send x̃ over a (14)

a(ỹ) — receive something over a and refer to it as ỹ (14)

a(νz̃) — private parameters, (νz̃) a〈z̃〉 (14)

G.P — run G then P (14)

P |Q — parallel composition (14)

P +Q — branching (14)

!G — replication (14)

(νx)P — x is private in P (14)

?.P — may or may not run P (63)

⊥.P — will never run P (61)

τ.P — runs P after a τ -transition (51)

a� b — forwards a to b (33)

P ⊕Q — internally selects P or Q (63)

P
µ−−→ P ′ — labelled transition (16)

P −→ P ′ — τ -reduction P
τ−−→ P ′

P =⇒ P ′ — weak transition (reflexive-transitive closure of −→)

P
µ

==⇒ P ′ — short for P =⇒ µ−−→ =⇒ P ′

B.3 Multiplicities

0, 1, ?, ω — zero, linear, plain, replicated (18)

#(G) — the multiplicity of G: 1 or ω (14)

pm — port p has multiplicity m (20)

B.4 Resources

U — universal properties (31)

E — existential properties (31)

proc — the “process channel”, connecting the process and its environment
(94)

A — active (62)

B — bounded (118)

D — deterministic (96)

procdf — deadlock-free (102)

I — isolated (95)

N — never used in subject position (98)

O — used as output object (45)

procok — correct (all channels protocols are respected) (43)

R — responsive (45)

$ — used at most a finite number of times (100)

B.5. TYPES AND BEHAVIOURAL STATEMENTS 165

B.5 Types and Behavioural Statements

⊥ — unsatisfiable dependency (21)

> — no dependency (21)

∆1/∆2 — ∆1 depends on ∆2 (31)

∆1.∆2 — ∆1 requires ∆2 (100)

pmk — pm ∧ pk (32)

∆1 ∨∆2 — one of ∆1 and ∆2 is true (21)∨
i∈I ∆i — ∆1 ∨ . . . ∨∆n, or ⊥ if I = ∅ (38)

∆1 ∧∆2 — both ∆1 and ∆2 are true (21)∧
i∈I ∆i — ∆1 ∧ . . . ∧∆n, or > if I = ∅ (38)

γ ∗ ε — γ ∧ ε is γ is universal, γ ∨ ε if γ is existential (129)

l — event l happened (57)

l̄ — event l has not happened (57)

(p1 + . . .+ pn)A — branching activeness (63)

εn — delayed dependency (58)

(σ̃; ξI; ξO) — channel type (20)

ξI — input behaviour (20)

ξO — output behaviour (20)

(Σ; ΞL J ΞE) — process type (20)

ΞL — local behaviour (20)

ΞE — environment behaviour (20)

(Σ; ΞL J ΞE) / (Ξ′L J Ξ′E) — (Σ; ΞL/ Ξ′L J ΞE/ Ξ′E) (50)

(Γ;P) — typed process (28)

B.6 Type Algebra

Γ ↪→ Γ′ — dependency reduction (49)

close (Γ) — closure (49)

clean (Γ) — removal of non-observable dependencies (50)

Γ — complement (27)

#Γ — Γ without its dependency statements (141)

Γ↓p — observability (24)

Γ↘ Γ′ — projection relation (39)

σ[x̃] — input parameter instantiation (27)

σ[x̃] — output parameter instantiation (27)

Γ� Γ′ — composition operator (35)⊙
i∈I Γi — Γ1 � · · · � Γn

Γ⊗ Γ′ — output composition (28)

Γ \ Γ′ — subtraction (26)

Γ o µ — transition operator (50)

Γ � Γ′ — Γ is stronger than Γ′ (22)

Γ � Γ′ — Γ is weaker than Γ′ (22)

Γ ∼= Γ′ — Γ is equivalent to Γ′ (22, 32)

(ν̄x)ε — dependency restriction (56)

166 APPENDIX B. NOTATION INDEX

B.7 Judgements

Γ `K P — Γ types P , using elementary rules for all k ∈ K (56)
Γ `pK P — Γ types P , using elementary rules for all k ∈ K, and p as P ’s

parent port (94)
Γ |= P — Γ is semantically correct for P , following existential semantics

(54)
Γ |=U P — Γ is semantically correct for P , following universal semantics

(40)
Γ |=# P — Γ is semantically correct for P , following simple semantics (29)
Γ `′K P — annotated type Γ types P , using elementary rules for all k ∈ K

(91)
goodk(p/ ε, (Γ;P)) — pk/ ε is immediately correct for (Γ;P) (39)
good#(Γ;P) — (Γ;P) is immediately correct with respect to the simple

semantics (148)
propk(σ,G,mi,mo) — elementary guard rule for property k (40)
sumk(p̃,Ξ) — elementary sum rule for property k (41)

B.8 Annotated typed Processes

Gl — annotated guard (73)
(l|ρ) — doubly anchored liveness strategy step (74)
(l|ρ] — singly anchored liveness strategy step (74)
• — communication partner in the environment (74)
ρ [s] — parameter port(s) s of ρ (74)
l. ρ — do step l then proceed with ρ (74)
π̃ ρ — try to follow π̃ but (at last step time) get hijacked and do ρ instead.

(74)
wt(ρ) — liveness strategy weight (88)
subP (ρ) — liveness strategy subject (79)
objP (π̃) — liveness strategy objects (79)
substP (π̃) — parameter substitution performed by sequence step (79)
dep−K,P (ρ) — ρ’s dependencies (81)
rdepK,P (σ̃, ξ, φ) — φ’s dependencies as a responsiveness strategy for (σ̃; ξ).

(82)
σ[x̃]l — parameter instantiation for event l (91)
γ/ ε : ρ — ρ is a liveness strategy for γ (74)
pR / ε : ρ. φ — p-guard ρ has responsiveness strategy φ (77)
markρ(P) — mark P with ρ (85)

P
µ,(li|lo)
−−−−−−−→ P ′ — transition with corresponding strategy step (86)

ran(P), ran(Γ) — annotation removal (74, 77, 78)

Index

activeness, 61
annotated

behavioural statement, 78
process, 73, 74
process type, 78
responsiveness statement, 77

annotation removal
process, 74
process type, 78
responsiveness statement, 77

behavioural statement, 21
binding, 43, 56

channel instantiation, 29
channel type

completion, 37
restrictions, 47

choice set, 84
closure, 36

completes, 91
complement, 29
completeness, 84
composition

behavioural statement, 26, 48
output, 29
preserves consistency, 90
process type, 28, 37

concurrent port use, 68
conjunction, 21
consistent, 82
contravariance, 34
convention

channel types, 48
notation, 34

deadlock-freedom, 102
delays, 58
dependency reduction, 36, 49

annotated, 89, 90
preserves consistency, 90

determinism, 96

elementary statement, 40
error state, 40
events, 57
existential predicate, 51
existential property, 33

guard, 14
guard rule, 41

activeness, 68
channel level, 94
correctness, 44
deadlock-freedom, 103
determinism, 97
isolation, 95
non-reachability, 98, 101
responsiveness, 46

isolation, 95

labelled transition system, 16
annotated, 87
equivalence lemma, 87
typed, 30

liveness, 52, 53
liveness strategy, 74

contradicting, 84
dependencies, 81
objects, 79
precursor, 90
runnable, 81
subject, 79

logical homomorphism, 23

marking, 85
matching, 84
multiplicity, 18
multiplicity addition, 26

normal form, 23

167

168 INDEX

observability, 25
observable removal, 36
observable removal, 50

p-reduction, 25
pre-completeness, 91
process, 14
process type, 19
process type replication, 43
projection, 40
property

channel level, 94
distributed, 71
local, 41

reachability, 98
responsiveness, 45
responsiveness strategy, 77

dependencies, 82
instantiation, 89

restriction, 29

selection, 21
semantic predicate, 40
semantics

activeness, 66
at most finite, 100
determinism, 96
existential, 54
isolation, 95
non-reachability, 98
responsiveness, 46
simple, 30
universal, 40

strategy function, 53
structural congruence, 14
sub-strategy, 77
subtraction, 27
success state, 51
sum guard, 83
sum rule, 41

activeness, 68
channel level, 94
determinism, 97

target function, 80
termination, 99
top level, 75
transition dependency, 53

activeness, 67

reachability, 99
transition operator, 29, 50

liveness strategy, 86
with universal properties, 39

type system
annotated, 92
existential, 56
universal, 42

typed process, 30

universal predicate, 40
universal property, 33

weakening, 22
weight, 88

