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Asynchronous �-Calculus

Basic Components

Names : a, b, c, x . . .

Processes : P, Q, . . .

Processes use names as channels for sending or receiving
data

Sending 	 on � : �  	

Receiving 	 on � (and then processing it in

�

) : � � �
	 �
�

�
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Asynchronous �-Calculus
(continued)

Processes can be combined using parallel composition

� � �

Example :
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�
�

�: Asynchronous �-Calculus with
Variants

Names sent on a channel can be labeled :

in �  �� ,

� � � � � name��� � �� �

labeled value

Labels are not names, they are just labels.

A case destructor can be used when receiving a labeled
value :
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What is TyCO?

With slight syntactic changes, TyCO is just a sub-calculus of

�
�

� :

Any output must be with a name having a single label
(no label-nesting)

At input time the case destruction is done immediately.

Additionally, instead of writing

� � �� �
�

	
 � � �  � ���� �
	 � � � �� ��  � like we would in �
�

� , we
write � � �� � �
	 � � � �� ��  �, which illustrates the atomicity of
input and case-destruction.
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Example : Church-Encoding of
Natural Numbers
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Is �
�

� More Expressive than TyCO?

TyCO being a sub-calculus of �
�

� , an encoding of TyCO

into �
�

� is straightforward.

Is it possible however to make an encoding of �
�

� into
TyCO?

We need to encode nested variants as single-level
variants and break the input / variant-destruction
atomicity

The encoding needs to respect the process
equivalences, i.e.

� � � � � � � � � � � � � � �
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Description of my project

To write a description of TyCO- �
�

� encoding and prove it
is valid

My guide @ EPFL provided me with a �
�

� -TyCO
encoding

The goal of my project is to prove that it is valid and
maybe to make necessary changes to it

If I have enough time, then study whether Non-Uniform
TyCO can be encoded into �

�
�
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That’s All, Folks

. . .
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