Branching Input Strongest Typing
Judgment

Let ;17 U{z;}1;0;T;), Fr P; be the strongest
judgment for P;. (By induction, 3!T%)

Let A,;T'y; Ay; 'y Fr P be any judgment for process
P. (R-INP) = A; ={a},, I =17, A, =0 and
\V/] - J, @, F’{ U {Q?j}l; @, Fu U {Zlfj}u l_R Pj.

By induction hypothesis : Vj € J, I';) C I'y U {z;}.
Therefore : o, (D), \ {2;}u) C T

The strongest judgment for P is then .
{a}1; T3 0; UjeJ (F(j)u \ {xj}u) Fr a?{lj(x5)=P;}jes

What Is TyCO, After All ? — p.1/1

What Is TyCcoO, After All ?

Maxime Gamboni

EPFL

What Is TyCO, After All ? — p.2/1

Asynchronous w-Calculus

Basic Components

Names: a, b, c, X...

Processes : P, Q, ...

Processes use names as channels for sending or receiving
data

Sending z ona: alx

Receiving z on a (and then processing itin P) : a?(x).P

What Is TyCO, After All ? — p.3/1

Asynchronous w-Calculus
(continued)

Processes can be combined using parallel composition

P|Q
Example :
(a!lz)|(a?(y).y!b) — 0|x!b
Names can be restricted to a part of a process

((vx) P)|Q : z is visible in P but not (directly) in

((vz)alz)|(a?(y).y'b) — (vz) (0|x!b) : P sends z on a
name visible to (), which extrudes the scope of z.

What Is TyCO, After All ? — p.4/1

mY: Asynchronous w-Calculus with
Variants

Names sent on a channel can be labeled :

N alv,

v L= a name
| I{v) labeled value

Labels are not names, they are just labels.

A case destructor can be used when receiving a labeled
value :

casev of {l;(z;)=P;},cs

What Is TyCO, After All ? — p.5/1

What is TycoO?

With slight syntactic changes, TyCO Is just a sub-calculus of
Vl
T, .

Any output must be with a name having a single label
(no label-nesting)

At input time the case destruction is done immediately.

Additionally, instead of writing

a?(v).casev of {1;(x;)=P;},c; like we would in ¥, we
write a?{1;(z;)=P;};cs, Which illustrates the atomicity of
Input and case-destruction.

What Is TyCO, After All ? — p.6/1

Example : Church-Encoding of
Natural Numbers

Zero(z) € 27{q(a)=alz(z)} (let z be the number

Zero)

Succ(y, x) © r?7*{q(a)=als(y)} (let = be the
successor of y)

def

Add(x,y,z) =

zlq(ra).a?{z(b)=zla(y),
s(b)=(vt) Add(b, y,1)]
t?{a(n)=zla(vr).Succ(n,r)}

What Is TyCO, After All ? — p.7/1

Is 7/ More Expressive than Tyco?

TyCO being a sub-calculus of 7/, an encoding of Tyco
into 7\ is straightforward.

Is it possible however to make an encoding of 7} into
TyCO?

We need to encode nested variants as single-level
variants and break the input / variant-destruction
atomicity

The encoding needs to respect the process
equivalences, i.e. PRQ < [P|R[Q]

What Is TyCO, After All ? — p.8/1

Description of my project

To write a description of Tyco-m) encoding and prove it
Is valid

My guide @ EPFL provided me with a 7} -TycoO
encoding

The goal of my project is to prove that it is valid and
maybe to make necessary changes to it

If | have enough time, then study whether Non-Uniform
TyCO can be encoded into 7}

What Is TyCO, After All ? — p.9/1

That’s All, Folks

What Is TyCO, After All ? — p.10/1

	Branching Input Strongest Typing Judgment
	Asynchronous $pi $-Calculus
	Asynchronous $pi $-Calculus (continued)
	piav : Asynchronous $pi $-Calculus with Variants
	What is 	yco ?
	Example : Church-Encoding of Natural Numbers
	Is piav More Expressive than 	yco ?
	Description of my project
	That's All, Folks

