
Branching Input Strongest Typing
Judgment

� � � � ���� �
	 � � � �� �� �

Let

��� � ��� � � 	 � � � � � � ���� ���

��� �� be the strongest
judgment for

�� . (By induction,
� � ���)

Let

! �� � � � !
� �

�
�

��� �
be any judgment for process�

. (R-INP) " ! � � � � � �,

� � � � ���,

!
� � �

and#$ % &(
'

� � � �)� � � 	 � � � � ��� �
� � � 	 � �
�

��� �� .

By induction hypothesis :

#$ % &
'

� �� ���

* �
� � � 	 � �
� .

Therefore : � �
+ ���� ��
, � 	 � �
�

- * �
� .

The strongest judgment for

�

is then :� � � � � � ��� �
��� � �
+ ���� ��
, � 	 � �
�

- ��� � � ���� �
	 � � � �� �� �

What Is TyCO, After All ? – p.1/10

What Is TyCO, After All ?

Maxime Gamboni

EPFL

What Is TyCO, After All ? – p.2/10

Asynchronous �-Calculus

Basic Components

Names : a, b, c, x . . .

Processes : P, Q, . . .

Processes use names as channels for sending or receiving
data

Sending 	 on � : � 	

Receiving 	 on � (and then processing it in

�

) : � � �
	 �
�

�

What Is TyCO, After All ? – p.3/10

Asynchronous �-Calculus
(continued)

Processes can be combined using parallel composition

� � �

Example :

� � 	 � � � � � ��� �
�

� � � � � � � 	 �

Names can be restricted to a part of a process

� �	� 	 � � � � �
: 	 is visible in

�

but not (directly) in

�

� �	� 	 � � 	 � � � � � ��� �
�

� � � � � �	� 	 � � � � 	 � �

:

�

sends 	 on a
name visible to

�

, which extrudes the scope of 	 .

What Is TyCO, After All ? – p.4/10

�
�

�: Asynchronous �-Calculus with
Variants

Names sent on a channel can be labeled :

in � �� ,

� � � � � name��� � �� �

labeled value

Labels are not names, they are just labels.

A case destructor can be used when receiving a labeled
value :

	
� � � � ��� �
	 � � � �� �� �

What Is TyCO, After All ? – p.5/10

What is TyCO?

With slight syntactic changes, TyCO is just a sub-calculus of

�
�

� :

Any output must be with a name having a single label
(no label-nesting)

At input time the case destruction is done immediately.

Additionally, instead of writing

� � �� �
�

	
 � � � � ���� �
	 � � � �� �� � like we would in �
�

� , we
write � � �� � �
	 � � � �� �� �, which illustrates the atomicity of
input and case-destruction.

What Is TyCO, After All ? – p.6/10

Example : Church-Encoding of
Natural Numbers

��� �� �
	 � ��� �
� 	 �	 ��
 � � � � � � �
	 � �

(let 	 be the number
zero)

��� � � � � ' 	
� �� �
� 	 �	 ��
 � � � � � �� � � � �

(let 	 be the
successor of �)

�� � �
	 ' � ' � � �� �
�

	
 �	� � �
�

� � �� �� � � � �� � � �
'

� �� � � �	� � � �� � ��
' � ' � � �

� � �� ��� � � � �� �	� � �
�

��� � � ��� ' � � �

�

What Is TyCO, After All ? – p.7/10

Is �
�

� More Expressive than TyCO?

TyCO being a sub-calculus of �
�

� , an encoding of TyCO

into �
�

� is straightforward.

Is it possible however to make an encoding of �
�

� into
TyCO?

We need to encode nested variants as single-level
variants and break the input / variant-destruction
atomicity

The encoding needs to respect the process
equivalences, i.e.

� � � � � � � � � � � � � � �

What Is TyCO, After All ? – p.8/10

Description of my project

To write a description of TyCO- �
�

� encoding and prove it
is valid

My guide @ EPFL provided me with a �
�

� -TyCO
encoding

The goal of my project is to prove that it is valid and
maybe to make necessary changes to it

If I have enough time, then study whether Non-Uniform
TyCO can be encoded into �

�
�

What Is TyCO, After All ? – p.9/10

That’s All, Folks

. . .

What Is TyCO, After All ? – p.10/10

	Branching Input Strongest Typing Judgment
	Asynchronous $pi $-Calculus
	Asynchronous $pi $-Calculus (continued)
	piav : Asynchronous $pi $-Calculus with Variants
	What is 	yco ?
	Example : Church-Encoding of Natural Numbers
	Is piav More Expressive than 	yco ?
	Description of my project
	That's All, Folks

