If you are in a hurry

SPOILER WARNING: Plot and/or ending details follow.

$$
\begin{aligned}
& \frac{-}{\emptyset \vdash \mathbf{0}}(\mathrm{NiL}) \frac{A \vdash_{\pi} P}{} \frac{A \leq A^{\prime}}{A^{\prime} \vdash_{\pi} P} \quad A^{\prime} \vdash_{\mathrm{p}} P(\mathrm{WEAK}) \frac{A \vdash_{\pi} P}{!A \vdash_{\pi}!P} \text { (REP) } \\
& \frac{i=1,2: A_{i} \vdash_{\pi} P_{i}}{A_{1} \odot A_{2} \vdash_{\pi} P_{1} \mid P_{2}}(\mathrm{PAR}) \quad \frac{A \vdash_{\pi} P}{(\boldsymbol{\nu} x) A \vdash_{\pi}(\boldsymbol{\nu} x) P} \text { (RES) } \\
& \frac{A \vdash_{\pi} P \quad \forall I: \mathbf{m d}\left(\Sigma_{A}(I)\right) \notin\left\{\downarrow_{1}, \uparrow_{1}, \downarrow_{\omega_{0}}\right\}}{p .(\boldsymbol{\nu} \tilde{x})\left(p:\left((\tilde{\sigma})^{\mathrm{p}}, \rho\right)+\rho(\tilde{x}: \tilde{\sigma}) \odot A\right) \vdash_{\mathrm{p}} p(\tilde{x}) . P}\left(\operatorname{INP}_{\mathrm{p}}\right) \\
& A \vdash_{\pi} P \\
& (\nu \tilde{x})\left(I:\left((\tilde{\sigma})^{\downarrow_{1}}, \rho, \emptyset,(\tilde{x})\right)+I \hat{I} . \hat{I} \rho(\tilde{x}: \tilde{\sigma}) \odot I . A\right) \vdash_{\pi} I(\tilde{x}) . P\left(\operatorname{INP}_{1}\right) \\
& \frac{A \vdash P}{(\nu \tilde{x})\left(u:\left((\tilde{\sigma})^{\downarrow \omega_{0}}, \rho, \emptyset,(\tilde{x})\right)+u . \rho(\tilde{x}: \tilde{\sigma}) \odot u . A\right) \vdash u(\tilde{x}) . P}\left(\operatorname{INP}_{\omega}\right) \\
& \frac{A \vdash_{\pi} P \quad \uparrow_{\omega} \notin \mathbf{m d}(\tilde{\sigma}) \quad \forall I: \mathbf{m d}\left(\Sigma_{A}(I)\right) \notin\left\{\downarrow_{1}, \uparrow_{1}, \downarrow_{\omega_{0}}\right\}}{p \cdot\left(p:\left((\tilde{\sigma})^{\mathrm{p}}, \rho\right)+\bar{\rho}(\tilde{x}: \tilde{\sigma}) \odot A\right) \vdash_{\mathrm{p}} \bar{p}(\tilde{x}\rangle . P}\left(\mathrm{OUT}_{\mathrm{p}}\right) \\
& A \vdash_{\pi} P \\
& I:\left((\overline{\tilde{\sigma}})^{\uparrow_{1}}, \rho, \emptyset, \emptyset,(\tilde{x})\right)+I . \grave{I} \cdot \bar{\rho}(\tilde{x}: \bar{\sigma}) \odot I . A \vdash_{\pi} \bar{I}\langle\tilde{x}\rangle . P\left(\mathrm{OuT}_{1}\right) \\
& \frac{A \vdash_{\pi} P}{u:\left((\tilde{\sigma})^{\uparrow_{\omega}}, \rho\right)+u . \bar{u} \cdot \bar{\rho}(\tilde{x}: \bar{\sigma}) \odot u . A \vdash_{\pi} \bar{u}\langle\tilde{x}\rangle . P}\left(\operatorname{OUT}_{\omega}\right)
\end{aligned}
$$

Deciding Deterministic Responsiveness and Closeness in π-calculus

Maxime Gamboni
Insituto Superior Técnico

June 27, 2006

Teach Yourself Polyadic π-Calculus in 4 Minutes (I)

- Model for Communication \& Concurrency
- Based around Named Channels

Teach Yourself Polyadic π-Calculus in 4 Minutes (I)

- Model for Communication \& Concurrency
- Based around Named Channels

Two kinds of things are done in π.

- Sending something (ξ) over a channel (a): $\bar{a}\langle\xi\rangle . P$
- Receiving something on a channel (a), and referring to it as x afterwards: $a(x) . P$

Teach Yourself Polyadic π-Calculus in 4 Minutes (II)

- Some other constructs: $P_{1} \mid P_{2},(\boldsymbol{\nu} x) P,!P, \mathbf{0}$
E.g. $\bar{a}\langle s\rangle|a(x) . \bar{x} \rightarrow \mathbf{0}| \bar{s}$

Teach Yourself Polyadic π-Calculus in 4 Minutes (II)

- Some other constructs: $P_{1} \mid P_{2},(\boldsymbol{\nu} x) P,!P, \mathbf{0}$
E.g. $\bar{a}\langle s\rangle|a(x) . \bar{x} \rightarrow \mathbf{0}| \bar{s}$
- POLY-adic: More than one name can be moved around at a time
E.g. $\bar{a}\langle x, y, z\rangle . P$

Encodings

- Higher level languages can be encoded into π :
$\llbracket \bar{a}\langle\xi\rangle \rrbracket \stackrel{\text { def }}{=} \bar{a}\langle u\rangle . \underbrace{!u(\tilde{r}) \cdots}_{\text {server for } \xi}$

Encodings

- Higher level languages can be encoded into π :
$\llbracket \bar{a}\langle\xi\rangle \rrbracket \stackrel{\text { def }}{=} \bar{a}\langle u\rangle . \underbrace{!u(\tilde{r}) . \cdots}_{\text {server for } \xi}$
- We want Full Abstraction:
$(P \approx Q) \Longleftrightarrow\left(\llbracket P \rrbracket \approx_{\mathrm{R}} \llbracket Q \rrbracket\right)$

\approx_{R} is not a Regular Bisimulation

- These two (high level) processes are bisimilar $P=a(\mathfrak{b}) . \operatorname{if}(\mathfrak{b})(i f(\neg \mathfrak{b})$ print OOPS; else print $O K ;)$ $Q=a(\mathfrak{b})$.print $O K$;

\approx_{R} is not a Regular Bisimulation

- These two (high level) processes are bisimilar
$P=a(\mathfrak{b}) \cdot \operatorname{if}(\mathfrak{b})($ if $(\neg \mathfrak{b})$ print OOPS; else print OK; $)$
$Q=a(\mathfrak{b})$.print $O K$;
- Yet their encoded forms are not.
- We also need to enforce:

\approx_{R} is not a Regular Bisimulation

- These two (high level) processes are bisimilar
$P=a(\mathfrak{b}) . \operatorname{if}(\mathfrak{b})($ if $(\neg \mathfrak{b})$ print OOPS; else print $O K ;)$
$Q=a(\mathfrak{b})$.print $O K$;
- Yet their encoded forms are not.
- We also need to enforce:

Determinism,

\approx_{R} is not a Regular Bisimulation

- These two (high level) processes are bisimilar
$P=a(\mathfrak{b}) . \operatorname{if}(\mathfrak{b})($ if $(\neg \mathfrak{b})$ print OOPS; else print $O K ;)$
$Q=a(\mathfrak{b})$.print $O K$;
- Yet their encoded forms are not.
- We also need to enforce:

Determinism, Closeness,

\approx_{R} is not a Regular Bisimulation

- These two (high level) processes are bisimilar
$P=a(\mathfrak{b}) \cdot \operatorname{if}(\mathfrak{b})($ if $(\neg \mathfrak{b})$ print OOPS; else print OK; $)$
$Q=a(\mathfrak{b})$.print $O K$;
- Yet their encoded forms are not.
- We also need to enforce:

Determinism, Closeness, Responsiveness

\approx_{R} is not a Regular Bisimulation

- These two (high level) processes are bisimilar
$P=a(\mathfrak{b}) \cdot \operatorname{if}(\mathfrak{b})($ if $(\neg \mathfrak{b})$ print OOPS; else print OK; $)$
$Q=a(\mathfrak{b})$.print $O K$;
- Yet their encoded forms are not.
- We also need to enforce:

Determinism, Closeness, Responsiveness and Uniformity.

Name Classes

Names in an encoded process (and its environment) are separated in three groups.

- For encoded data:
ω-names

Name Classes

Names in an encoded process (and its environment) are separated in three groups.

- For encoded data:
ω-names
- For responsiveness:
linear names

Name Classes

Names in an encoded process (and its environment) are separated in three groups.

- For encoded data:
ω-names
- For responsiveness:
linear names
- For the rest:
plain names

Templates and Observability

Two constructs are needed for defining bisimilarity:

Definition

Template Processes $\mathrm{L}_{\sigma}(\mathrm{a})$: Models ω-servers in the environment.
$\mathrm{L}_{\left((\mathrm{p})^{\uparrow_{1}}\right)^{\downarrow_{\omega}}}(a)=!a(x) \cdot \bar{x}\left\langle a_{1}\right\rangle$

Templates and Observability

Two constructs are needed for defining bisimilarity:

Definition

Template Processes $\mathrm{L}_{\sigma}(\mathrm{a})$: Models ω-servers in the environment.
$\mathrm{L}_{\left((\mathrm{p})^{\uparrow_{1}}\right)^{\downarrow_{\omega}}}(a)=!a(x) \cdot \bar{x}\left\langle a_{1}\right\rangle$

Definition

Observable Data $\Omega_{P}^{\Sigma}(a)$: Tests ω-servers in the process.
If $P=!a(x) \cdot \bar{x}\langle z\rangle$ then $\Omega_{P}^{\Sigma}(a)=\langle z\rangle$

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:
(1) If $P \xrightarrow{\mu} P^{\prime}$ where μ is silent or on a plain/linear channel:

- $Q \xlongequal{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:
(1) If $P \xrightarrow{\mu} P^{\prime}$ where μ is silent or on a plain/linear channel:

- $Q \xlongequal{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
(2) $\forall u$-input in $P\left(\right.$ say $\left.P \xrightarrow{u(\tilde{x})} P^{\prime}\right)$
- $\Omega_{P}^{\Sigma}(u)=\Omega_{Q}^{\Sigma}(u)$,

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:
(1) If $P \xrightarrow{\mu} P^{\prime}$ where μ is silent or on a plain/linear channel:

- $Q \xlongequal{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
(2) $\forall u$-input in $P\left(\right.$ say $\left.P \xrightarrow{u(\tilde{x})} P^{\prime}\right)$
- $\Omega_{P}^{\Sigma}(u)=\Omega_{Q}^{\Sigma}(u)$,
- Safety: $P^{\prime} \mathcal{R} P^{\prime}$,

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:
(1) If $P \xrightarrow{\mu} P^{\prime}$ where μ is silent or on a plain/linear channel:

- $Q \xlongequal{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
(2) $\forall u$-input in $P\left(\right.$ say $\left.P \xrightarrow{u(\tilde{x})} P^{\prime}\right)$
- $\Omega_{P}^{\Sigma}(u)=\Omega_{Q}^{\Sigma}(u)$,
- Safety: $P^{\prime} \mathcal{R} P^{\prime}$,
- Determinism: $\exists!\xi$ s.t. $\Omega_{P}^{\Sigma}(u)=\xi$,

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:
(1) If $P \xrightarrow{\mu} P^{\prime}$ where μ is silent or on a plain/linear channel:

- $Q \xlongequal{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
(2) $\forall u$-input in $P\left(\right.$ say $\left.P \xrightarrow{u(\tilde{x})} P^{\prime}\right)$
- $\Omega_{P}^{\Sigma}(u)=\Omega_{Q}^{\Sigma}(u)$,
- Safety: $P^{\prime} \mathcal{R} P^{\prime}$,
- Determinism: $\exists!\xi$ s.t. $\Omega_{P}^{\Sigma}(u)=\xi$,
- Closeness: $P \mathcal{R}(\nu \tilde{x}) P^{\prime}$.

Discreet Bisimulation

Symmetric \mathcal{R} is a discreet bisimulation if $P \mathcal{R} Q$ implies:
(1) If $P \xrightarrow{\mu} P^{\prime}$ where μ is silent or on a plain/linear channel:

- $Q \xlongequal{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
(2) $\forall u$-input in $P\left(\right.$ say $\left.P \xrightarrow{u(\tilde{x})} P^{\prime}\right)$
- $\Omega_{P}^{\Sigma}(u)=\Omega_{Q}^{\Sigma}(u)$,
- Safety: $P^{\prime} \mathcal{R} P^{\prime}$,
- Determinism: $\exists!\xi$ s.t. $\Omega_{P}^{\Sigma}(u)=\xi$,
- Closeness: $P \mathcal{R}(\nu \tilde{x}) P^{\prime}$.
(3) $\forall u \omega$-output in P :
- $\left(\mathrm{L}_{\sigma}(u) \mid P\right) \mathcal{R} Q$.

Channel Types

Definition

A Channel Type is a structure of the form:

$$
a:\left((\tilde{\sigma})^{m}, \rho, \tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}\right)
$$

- $\tilde{\sigma}$: Parameters
- m: Action Mode
- ρ : Protocol
- $\tilde{\alpha}$: Receptiveness
- $\tilde{\beta}$: Input Responsiveness
- $\tilde{\gamma}$: Output Responsiveness

Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact.

Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact. - ω over p :
$(\nu p)(\bar{p}\langle u\rangle .!u \cdots|\bar{p}\langle v\rangle .!v \cdots| p(x) . \cdots \mid p(y) . \cdots)$

Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact.

- ω over p:
$(\nu p)(\bar{p}\langle u\rangle .!u \cdots|\bar{p}\langle v\rangle .!v \cdots| p(x) . \cdots \mid p(y) . \cdots)$
- p over ω :
$\bar{u}\langle l, p, q\rangle \mid!u(x, y, z) \cdot \bar{x}\langle y\rangle$

Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact.

- ω over p:
$(\nu p)(\bar{p}\langle u\rangle .!u \cdots|\bar{p}\langle v\rangle .!v \cdots| p(x) . \cdots \mid p(y) . \cdots)$
- p over ω :
$\bar{u}\langle I, p, q\rangle \mid!u(x, y, z) \cdot \bar{x}\langle y\rangle$
- Still, ω 's discreetness guarantees are preserved.

Anatomy of one Rule

$$
\frac{A \vdash_{\pi} P}{(\nu \tilde{x})\left(I:\left(\downarrow_{1}\right)\left((\tilde{\sigma})^{\downarrow_{1}}, \rho, \emptyset,(\tilde{x})\right)+l . \hat{l} . \rho(\tilde{x}: \tilde{\sigma}) \odot I . A\right) \vdash_{\pi} I(\tilde{x}) . P}\left(\operatorname{INP}_{1}\right)
$$

Anatomy of one Rule

$$
\frac{A \vdash_{\pi} P}{(\nu \tilde{x})\left(I:\left(\downarrow_{1}\right)\left((\tilde{\sigma})^{\downarrow_{1}}, \rho, \emptyset,(\tilde{x})\right)+I . \hat{I} . \rho(\tilde{x}: \tilde{\sigma}) \odot I . A\right) \vdash_{\pi} I(\tilde{x}) . P}\left(\operatorname{INP}_{1}\right)
$$

- I receptive now; responsive when parameters are ready

Anatomy of one Rule

$$
\frac{A \vdash_{\pi} P}{(\nu \tilde{x})\left(I:\left(\downarrow_{1}\right)\left((\tilde{\sigma})^{\downarrow_{1}}, \rho, \emptyset,(\tilde{x})\right)+l . \hat{I} . \rho(\tilde{x}: \tilde{\sigma}) \odot I . A\right) \vdash_{\pi} I(\tilde{x}) . P}\left(\operatorname{INP}_{1}\right)
$$

- I receptive now; responsive when parameters are ready
- Remote parameters

Anatomy of one Rule

$$
\frac{A \vdash_{\pi} P}{(\boldsymbol{\nu} \tilde{x})\left(I:\left(\downarrow_{1}\right)\left((\tilde{\sigma})^{\downarrow_{1}}, \rho, \emptyset,(\tilde{x})\right)+l . \hat{l} . \rho(\tilde{x}: \tilde{\sigma}) \odot I . A\right) \vdash_{\pi} I(\tilde{x}) . P}\left(\operatorname{INP}_{1}\right)
$$

- I receptive now; responsive when parameters are ready
- Remote parameters
- Continuation

Anatomy of one Rule

$$
\frac{A \vdash_{\pi} P}{(\nu \tilde{x})\left(I:\left(\downarrow_{1}\right)\left((\tilde{\sigma})^{\downarrow_{1}}, \rho, \emptyset,(\tilde{x})\right)+I . \hat{l} . \rho(\tilde{x}: \tilde{\sigma}) \odot I . A\right) \vdash_{\pi} I(\tilde{x}) . P}\left(\operatorname{INP}_{1}\right)
$$

- I receptive now; responsive when parameters are ready
- Remote parameters
- Continuation
- P must provide resources specified in $\tilde{\sigma}$

(Expected) Results

Discreetness:

Theorem

$$
\left(A \vdash_{\pi} P\right) \Rightarrow\left(P \approx_{\mathrm{R}} P\right)
$$

(Expected) Results

Discreetness:

Theorem

$$
\left(A \vdash_{\pi} P\right) \Rightarrow\left(P \approx_{\mathrm{R}} P\right)
$$

Soundness:
Theorem

$$
\begin{gathered}
\left(A \vdash_{\pi} P\right) \wedge \Sigma_{A}(a)=(\cdots)^{\uparrow_{1}} \Rightarrow(P \xlongequal{(\nu \tilde{z}) \bar{a}\langle\tilde{x}\rangle}) \\
\left(A \vdash_{\pi} P\right) \wedge \Sigma_{A}(a)=(\cdots)^{\downarrow_{1}} \Rightarrow(P \xlongequal{a(\tilde{x})})
\end{gathered}
$$

(Expected) Results

Discreetness:

Theorem

$$
\left(A \vdash_{\pi} P\right) \Rightarrow\left(P \approx_{\mathrm{R}} P\right)
$$

Soundness:
Theorem

$$
\begin{gathered}
\left(A \vdash_{\pi} P\right) \wedge \Sigma_{A}(a)=(\cdots)^{\uparrow_{1}} \Rightarrow(P \xlongequal{(\nu \tilde{z}) \bar{a}\langle\tilde{x}\rangle}) \\
\left(A \vdash_{\pi} P\right) \wedge \Sigma_{A}(a)=(\cdots)^{\downarrow_{1}} \Rightarrow(P \xlongequal{a(\tilde{x})})
\end{gathered}
$$

Safety:

Theorem

$$
\left(A \vdash_{\pi} P\right) \wedge\left(P \rightarrow P^{\prime}\right) \Rightarrow\left(A \vdash_{\pi} P^{\prime}\right)
$$

Thank You (Obrigado, Shukria, Kiitos, Merci)!

The paper can be found at http://gamboni.org/maxime/

