If you are in a hurry

SPOILER WARNING: Plot and/or ending details follow.

- A P A<A Ab. P
0ro Ab, P A, p W)
i=1,2:A Fr P; Aby P
Ao PP AR A o (RES)
Aty P VEmd(Ta (D) & {da, 10 oot
p-(vx) (p: ((5)°,p) +p(%:5) ®A) ko p(X).P
Aty P
(v%) (/ ((B), 0,0, (%) + Lip(% : &) @I.A) b I(%).P
AP
(v%) (u ((5) 0, p,0, (X)) + v.p(k : 5) O u.A) Fou(x).P
Aty P 4,gmd(3) VI:md(Za(l) & {1, 11, bup}
p-(p:((5)°,p) +p(%:5)®A) Fp B(X).P
Aty P
1 ((B)™,0,0,0,(%) + 11.p(% : 5) © LA b 1(X).P
Aty P
u: (), p) + utp(k: 5) © u.A by (X).P

(N1L)

(REP)

(Inpp)

(Inpy)

(INPy)

(OuTy)

(OuT,)

(Ovuty)

Deciding Deterministic Responsiveness and

Closeness in m-calculus

Maxime Gamboni

Insituto Superior Técnico

June 27, 2006

m-Calculus

Teach Yourself Polyadic 7-Calculus in 4 Minutes (1)

@ Model for Communication & Concurrency

@ Based around Named Channels

m-Calculus

Teach Yourself Polyadic 7-Calculus in 4 Minutes (1)

@ Model for Communication & Concurrency

@ Based around Named Channels
Two kinds of things are done in 7.

e Sending something (&) over a channel (a): a(¢).P

@ Receiving something on a channel (a), and referring to it as x
afterwards: a(x).P

m-Calculus

Teach Yourself Polyadic 7-Calculus in 4 Minutes (I1)

@ Some other constructs: P;1|P,, (vx)P, P, 0

E.g. a(s)|a(x).x - 0|53

m-Calculus

Teach Yourself Polyadic 7-Calculus in 4 Minutes (I1)

@ Some other constructs: P;1|P,, (vx)P, P, 0

E.g. a(s)|a(x).x - 0|53
@ POLY-adic: More than one name can be moved around at a
time

E.g. a(x,y,z).P

Motivation

Encodings

@ Higher level languages can be encoded into

[36)] & 3. 1u(?). -
N—

server for &

Motivation Y
Encodings

@ Higher level languages can be encoded into

[36)] & 3. 1u(?). -
N—

server for &

@ We want Full Abstraction:
(P=Q) < ([PI=r[R])

Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar

P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar
P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

@ Yet their encoded forms are not.

@ We also need to enforce:

Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar

P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

@ Yet their encoded forms are not.

@ We also need to enforce:

Determinism,

Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar

P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

@ Yet their encoded forms are not.

@ We also need to enforce:

Determinism, Closeness,

Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar

P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

@ Yet their encoded forms are not.

@ We also need to enforce:

Determinism, Closeness, Responsiveness

Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar

P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

@ Yet their encoded forms are not.

@ We also need to enforce:

Determinism, Closeness, Responsiveness and Uniformity.

Semantics

Name Classes

Names in an encoded process (and its environment) are separated
in three groups.

@ For encoded data:

w-names

Semantics

Name Classes

Names in an encoded process (and its environment) are separated
in three groups.

@ For encoded data:
w-names
@ For responsiveness:

linear names

Semantics

Name Classes

Names in an encoded process (and its environment) are separated
in three groups.

@ For encoded data:
w-names

@ For responsiveness:
linear names

@ For the rest:

plain names

Semantics
Templates and Observability

Two constructs are needed for defining bisimilarity:

Definition

Template Processes L,(a) : Models w-servers in the environment.

L((p)h)lw (a) =1a(x).x{a1)

Semantics Y
Templates and Observability

Two constructs are needed for defining bisimilarity:
Definition

Template Processes L,(a) : Models w-servers in the environment.

L((p)h)lw (a) =1a(x).x{a1)

Definition

Observable Data Q% (a): Tests w-servers in the process.

If P =1a(x).x(z) then Q% (a) = (z)

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:

o Q £ Q' and PRQ.

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:
o Q & @ and P'RQ.
. . u(®) o
@ VYu w-input in P (say P —— P')
o Op (u) = Q5 (u),

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:

o Q £ Q' and PRQ.

. . u(®) o
@ VYu w-input in P (say P —— P')
o QF (u) = Q5 (u),
o Safety: P'RFP’,

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:

o Q & Q' and PRQ.
: : u(%) -,
@ VYu w-input in P (say P —— P’)
o OF (u) = 05 (u),
o Safety: P'RP’,
o Determinism: JI¢ s.t. QF (u) = &,

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:
o Q & @ and P'RQ.
. . u(®) o
@ VYu w-input in P (say P —— P')
QF (u) = 25 ()
Safety: P'RP’,
Determinism: 3¢ s.t. Q5 (u) = ¢,
Closeness: PR(vx) P'.

Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:

o Q & Q' and PRQ.
)) u(x)

@ Vu w-input in P (say P —— P')
Q3 (u) = 25 (u),
Safety: P'RP’,
Determinism: 3¢ s.t. Q5 (u) = ¢,
Closeness: PR(vx) P'.
© VYu w-output in P:

o (Ly(v)| P)RQ.

Type System

Channel Types

Definition
A Channel Type is a structure of the form:

a: ((5)",p, 8 P.7)

Parameters

: Action Mode
Protocol
Receptiveness

Input Responsiveness

© © 06 06 © o
™ RrR 3 W

Output Responsiveness

Type System

Inter-Class Interactions

Highly constrained w and unreliable plain names can interact.

Type System

Inter-Class Interactions

Highly constrained w and unreliable plain names can interact.

@ w over p:

(wp) (p(u)-Lu-- [p(v).t v [p(x). | p(y)--+)

Type System

Inter-Class Interactions

Highly constrained w and unreliable plain names can interact.
@ w over p:

(p) (Bu)tu--- | P(V)dv - | p(x). - | p(y).)
@ p over w:

u(l,p,q) | Yu(x,y,z).x{(y)

Type System

Inter-Class Interactions

Highly constrained w and unreliable plain names can interact.
@ w over p:

(p) (Bu)tu--- | P(V)dv - | p(x). - | p(y).)
@ p over w:

w(l,p,q) [tu(x,y,z)X(y)

@ Still, w’s discreetness guarantees are preserved.

Anatomy of one Rule

Ak, P
(ws) (11 ()((3)% .0, (%) +11p(% :) OLA) by (%).P

(Inpy)

Type System
Anatomy of one Rule

Ak, P
(ws) (11 (B2 .0, (%) +110(% :) OLA) by (%).P

(Inpy)

@ | receptive now; responsive when parameters are ready

Type System
Anatomy of one Rule

Ak, P
(ws) (1: ()((3)% .0, (%) +11p(:) OLA) by (%).P

(Inpy)

@ | receptive now; responsive when parameters are ready

@ Remote parameters

Type System
Anatomy of one Rule

Ak, P
(ws) (11 ()((3)% 0.0, (%) +11p(% :) OLA) by (%).P

(Inpy)

@ | receptive now; responsive when parameters are ready
@ Remote parameters

@ Continuation

Type System

Anatomy of one Rule

Ak, P
(w5) (1: ()((3)% .0, (%) +11p(% :) OLA) by (%).P

(Inpy)

| receptive now; responsive when parameters are ready
Remote parameters

Continuation

P must provide resources specified in &

Conclusion

(Expected) Results

Discreetness:

(Abz P)=(P=grP)

Conclusion

(Expected) Results

Discreetness:

Conclusion

(Expected) Results

Discreetness:

Safety:

(Abz PYA(P - P)Y= (At P)

Conclusion

Thank You (Obrigado, Shukria, Kiitos, Merci)!

The paper can be found at http://gamboni.org/maxime/

http://gamboni.org/maxime/

	-Calculus
	Motivation
	Semantics
	Type System
	Conclusion

