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m-Calculus

Teach Yourself Polyadic 7-Calculus in 4 Minutes (1)

@ Model for Communication & Concurrency

@ Based around Named Channels
Two kinds of things are done in 7.

e Sending something (&) over a channel (a): a(¢).P

@ Receiving something on a channel (a), and referring to it as x
afterwards: a(x).P
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m-Calculus

Teach Yourself Polyadic 7-Calculus in 4 Minutes (I1)

@ Some other constructs: P;1|P,, (vx)P, P, 0

E.g. a(s)|a(x).x - 0|53
@ POLY-adic: More than one name can be moved around at a
time

E.g. a(x,y,z).P
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@ Higher level languages can be encoded into
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server for &

@ We want Full Abstraction:
(P=Q) < ([PI=r[R])
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@ Yet their encoded forms are not.
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Motivation

~R is not a Regular Bisimulation

@ These two (high level) processes are bisimilar

P = a(b).if(b) (if(—b) print OOPS; else print OK;)
Q = a(b).print OK;

@ Yet their encoded forms are not.

@ We also need to enforce:

Determinism, Closeness, Responsiveness and Uniformity.
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Semantics

Name Classes

Names in an encoded process (and its environment) are separated
in three groups.

@ For encoded data:
w-names

@ For responsiveness:
linear names

@ For the rest:

plain names
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Semantics Y
Templates and Observability

Two constructs are needed for defining bisimilarity:
Definition

Template Processes L,(a) : Models w-servers in the environment.

L((p)h)lw (a) =1a(x).x{a1)

Definition

Observable Data Q% (a): Tests w-servers in the process.

If P =1a(x).x(z) then Q% (a) = (z)
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Semantics

Discreet Bisimulation

Symmetric R is a discreet bisimulation if PRQ implies:
0 If P 5 P’ where w is silent or on a plain/linear channel:

o Q & Q' and PRQ.
) ) u(x)

@ Vu w-input in P (say P —— P')
Q3 (u) = 25 (u),
Safety: P'RP’,
Determinism: 3¢ s.t. Q5 (u) = ¢,
Closeness: PR(vx) P'.
© VYu w-output in P:

o (Ly(v)| P)RQ.



Type System

Channel Types

Definition
A Channel Type is a structure of the form:

a: ((5)",p, 8 P.7)

Parameters

: Action Mode
Protocol
Receptiveness

Input Responsiveness

© © 06 06 © o
™ RrR 3 W

Output Responsiveness
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Type System

Inter-Class Interactions

Highly constrained w and unreliable plain names can interact.
@ w over p:

(p) (Bu)tu--- | P(V)dv - | p(x). - | p(y). )
@ p over w:

w(l,p,q) [ tu(x,y,z)X(y)

@ Still, w’s discreetness guarantees are preserved.
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(Inpy)
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Type System

Anatomy of one Rule

Ak, P
(w5) (1: ()((3)% .0, (%) +11p(% : ) OLA) by (%).P

(Inpy)

| receptive now; responsive when parameters are ready
Remote parameters

Continuation

P must provide resources specified in &



Conclusion

(Expected) Results

Discreetness:

(Abz P)=(P=grP)




Conclusion

(Expected) Results

Discreetness:




Conclusion

(Expected) Results

Discreetness:

Safety:

(Abz PYA(P - P)Y= (At P)




Conclusion

Thank You (Obrigado, Shukria, Kiitos, Merci )!

The paper can be found at http://gamboni.org/maxime/


http://gamboni.org/maxime/

	-Calculus
	Motivation
	Semantics
	Type System
	Conclusion

