## Activeness and Responsiveness in Mobile Processes

Maxime Gamboni<sup>1</sup>

Instituto de Telecomunicações, Instituto Superior Técnico

May 27, 2009

<sup>&</sup>lt;sup>1</sup>Joint work with António Ravara

### This Work

Characterising two liveness properties in a mobile process through the use of a type system.

### This Work

Characterising two liveness properties in a mobile process through the use of a type system.

- Types: descriptions
- Type Semantics: formal meaning
- Type System: computable algorithm

## Type System

Type System

- Types: descriptions
- Type Semantics: formal meaning
- Type System: computable algorithm

- Types: descriptions
- Type Semantics: formal meaning
- Type System: computable algorithm

Mobile Processes



Soundness



Completeness



Mobile Processes



Soundness

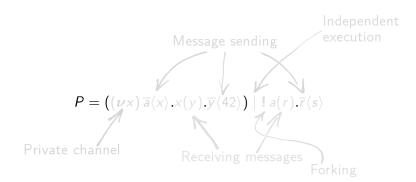


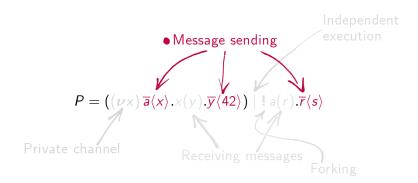
Completeness



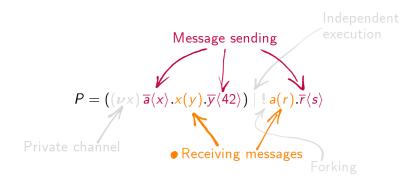
Mobile Processes

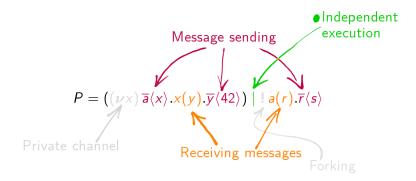



Soundness

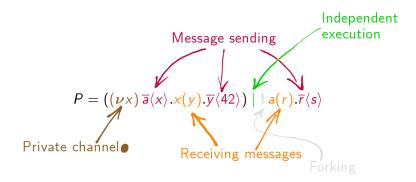


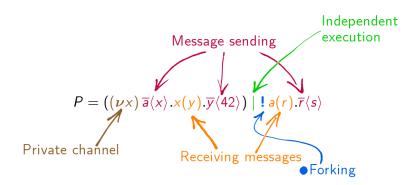

Completeness





Characterising two liveness properties in a mobile process through the use of a type system.







# The Synchronous Polyadic $\pi$ -calculus





# The Synchronous Polyadic $\pi$ -calculus





$$\begin{array}{c}
((\nu x)\overline{a}\langle x\rangle.x(y).\overline{y}\langle 42\rangle) \mid a(r).\overline{r}\langle s\rangle \\
\rightarrow (\nu x)(x(y).\overline{y}\langle 42\rangle \mid \overline{x}\langle s\rangle) \\
\rightarrow (\nu x)(\overline{s}\langle 42\rangle \mid 0) \\
\xrightarrow{\overline{s}\langle 42\rangle} (\nu x)(0\mid 0) \\
= 0
\end{array}$$

### Transitions

$$((\nu x) \overline{a}\langle x \rangle.x(y).\overline{y}\langle 42 \rangle) \mid a(r).\overline{r}\langle s \rangle$$

$$\rightarrow (\nu x) (x(y).\overline{y}\langle 42 \rangle \mid \overline{x}\langle s \rangle)$$

$$\rightarrow (\nu x) (\overline{s}\langle 42 \rangle \mid 0)$$

$$\xrightarrow{\overline{s}\langle 42 \rangle} (\nu x) (0 \mid 0)$$

$$= 0$$

### **Transitions**

$$((\nu x) \overline{a}\langle x \rangle.x(y).\overline{y}\langle 42 \rangle) \mid a(r).\overline{r}\langle s \rangle$$

$$\rightarrow (\nu x) (x(y).\overline{y}\langle 42 \rangle \mid \overline{x}\langle s \rangle)$$

$$\rightarrow (\nu x) (\overline{s}\langle 42 \rangle \mid \mathbf{0})$$

$$\xrightarrow{\overline{s}\langle 42 \rangle} (\nu x) (0 \mid 0)$$

$$= \mathbf{0}$$

Type System

$$((\nu x) \overline{a} \langle x \rangle.x(y).\overline{y} \langle 42 \rangle) \mid a(r).\overline{r} \langle s \rangle$$

$$\rightarrow (\nu x) (x(y).\overline{y} \langle 42 \rangle \mid \overline{x} \langle s \rangle)$$

$$\rightarrow (\nu x) (\overline{s} \langle 42 \rangle \mid \mathbf{0})$$

$$\xrightarrow{\overline{s} \langle 42 \rangle} (\nu x) (\mathbf{0} \mid \mathbf{0})$$

$$= 0$$

### **Transitions**

$$((\nu x) \overline{a}\langle x \rangle.x(y).\overline{y}\langle 42 \rangle) \mid a(r).\overline{r}\langle s \rangle$$

$$\rightarrow (\nu x) (x(y).\overline{y}\langle 42 \rangle \mid \overline{x}\langle s \rangle)$$

$$\rightarrow (\nu x) (\overline{s}\langle 42 \rangle \mid \mathbf{0})$$

$$\xrightarrow{\overline{s}\langle 42 \rangle} (\nu x) (\mathbf{0} \mid \mathbf{0})$$

$$= \mathbf{0}$$

### This Work

Type System

Characterising two liveness properties in a mobile process through the use of a type system.

### Activeness

### Definition (Activeness)

Activeness  $p_A$  of a port  $p \in \{a, \bar{a}\}$  in a process P: Ability of P to reliably receive (p = a) or send  $(p = \bar{a})$  a message on it.

- $\overline{s}$  active in  $((\nu x) \overline{a} \langle x \rangle. x(y). \overline{y} \langle 42 \rangle) \mid a(r). \overline{r} \langle s \rangle$ ,
- $\overline{s}$  not active in  $((\nu x) \overline{a} \langle x \rangle. x(y). \overline{y} \langle 42 \rangle) \mid a(r). \overline{r} \langle s \rangle \mid \overline{a} \langle w \rangle$ .

### Activeness

### Definition (Activeness)

Activeness  $p_A$  of a port  $p \in \{a, \bar{a}\}$  in a process P: Ability of P to reliably receive (p = a) or send  $(p = \bar{a})$  a message on it.

- $\overline{s}$  active in  $((\nu x) \overline{a} \langle x \rangle. x(y). \overline{y} \langle 42 \rangle) \mid a(r). \overline{r} \langle s \rangle$ ,
- $\overline{s}$  not active in  $((\nu x) \overline{a} \langle x \rangle. x(y). \overline{y} \langle 42 \rangle) \mid a(r). \overline{r} \langle s \rangle \mid \overline{a} \langle w \rangle$ .

### Activeness

### Definition (Activeness)

Activeness  $p_A$  of a port  $p \in \{a, \bar{a}\}$  in a process P: Ability of P to reliably receive (p = a) or send  $(p = \bar{a})$  a message on it.

- $\overline{s}$  active in  $((\nu x) \overline{a} \langle x \rangle. x(y). \overline{y} \langle 42 \rangle) \mid a(r). \overline{r} \langle s \rangle$ ,
- $\overline{s}$  not active in  $((\nu x) \overline{a} \langle x \rangle . x(y) . \overline{y} \langle 42 \rangle) \mid a(r) . \overline{r} \langle s \rangle \mid \overline{a} \langle w \rangle$ .

## Responsiveness

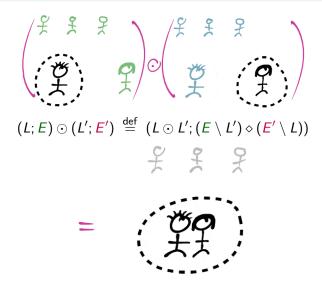
#### Definition (Responsiveness)

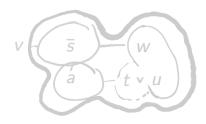
Responsiveness  $p_R$  of a port p in a process P is the ability, every time a communication occurs on that port, to continue the conversation as far as requested by the other party.

- Port  $\bar{a}$  is responsive but not active in  $?.\bar{a}\langle x\rangle.x(y).\bar{y}\langle 42\rangle$
- Port  $\bar{a}$  is active but not responsive in  $\bar{a}\langle x\rangle.x(y).?.\bar{y}\langle 42\rangle$

## Responsiveness

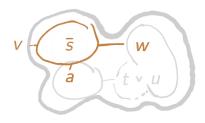
### Definition (Responsiveness)


Responsiveness  $p_R$  of a port p in a process P is the ability, every time a communication occurs on that port, to continue the conversation as far as requested by the other party.


- Port  $\bar{a}$  is responsive but not active in  $?.\bar{a}\langle x\rangle.x(y).\bar{y}\langle 42\rangle$
- Port  $\bar{a}$  is active but not responsive in  $\bar{a}\langle x\rangle.x(y).?.\bar{y}\langle 42\rangle$

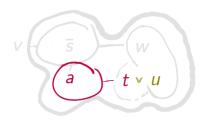
### This Work

**Characterising** two liveness properties in a mobile process through the use of a type system.


## **Environment and Composition**

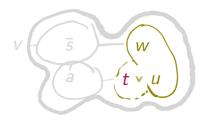





$$(\bar{t}.a \mid \bar{u}.a) \mid (\bar{v}.\bar{a}.\bar{w}.\bar{s}) \mid (u \mid w)$$

- $\bar{s}$  depends on v, a and w
- a depends on any one of t or ι
- and u, w are provided on the right
- Therefore  $\bar{s}$  only depends on v

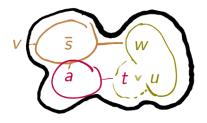



$$(\bar{t}.a \mid \bar{u}.a) \mid (\bar{v}.\bar{a}.\bar{w}.\bar{s}) \mid (u \mid w)$$

- $\bar{s}$  depends on v, a and w
- a depends on any one of t or t
- and u, w are provided on the right
- Therefore  $\bar{s}$  only depends on v



$$(\bar{t}.a \mid \bar{u}.a) \mid (\bar{v}.\bar{a}.\bar{w}.\bar{s}) \mid (u \mid w)$$


- $\bar{s}$  depends on v, a and w
- a depends on any one of t or u
- and u, w are provided on the right
- Therefore  $\bar{s}$  only depends on v



$$(\bar{t}.a \mid \bar{u}.a) \mid (\bar{v}.\bar{a}.\bar{w}.\bar{s}) \mid (u \mid w)$$

- $\bullet$   $\bar{s}$  depends on v, a and w
- a depends on any one of t or u
- and u, w are provided on the right
- Therefore  $\bar{s}$  only depends on v

### Conditional Activeness



$$(\bar{t}.a \mid \bar{u}.a) \mid (\bar{v}.\bar{a}.\bar{w}.\bar{s}) \mid (u \mid w)$$

- $\bullet$   $\bar{s}$  depends on v, a and w
- a depends on any one of t or u
- and u, w are provided on the right
- Therefore  $\bar{s}$  only depends on v

## Labelled Dependencies

Mobile Processes

$$P = (\nu t) \left(\overline{t} \mid t.(z|a(x).\overline{z}.\overline{x}) \mid t.a(y).\overline{y}\right)$$

$$\overline{t}_{\mathbf{A}} \triangleleft \bot$$
 ;  $z_{\mathbf{A}} \triangleleft \overline{t}_{\mathbf{A}}$  ;  $a_{\mathbf{R}} \triangleleft z_{\mathbf{A}} \Rightarrow a_{\mathbf{R}} \triangleleft \bot$ 

#### Labelled Dependencies

- Labels I, I', . . .
- $\overline{I} \vee \varepsilon$ : Only need  $\varepsilon$  if "I" occurred.
- $I \vee \varepsilon$ : Need  $\varepsilon$  unless "I" occurred.

Set "I" to "The left t.-prefix got consumed".

$$\bar{t}_{\Delta} \triangleleft \bot$$
 ;  $z_{\Delta} \triangleleft I \lor \bar{t}_{\Delta}$  ;  $a_{R} \triangleleft \bar{I} \lor z_{\Delta} \Rightarrow a_{R} \triangleleft \top$ 

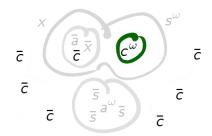
## Multiplicities

$$P = ((\nu x) \,\overline{a}\langle x \rangle.x(y).\overline{y}\langle 42 \rangle) \mid ! \,a(r).\overline{r}\langle s \rangle$$

- $\bar{a}^1$ : One output on a
- $a^{\omega}$ : Arbitrarily many inputs on a
- $\bar{s}^*$ : Unspecified number of outputs on s

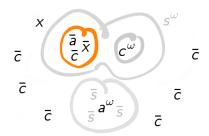
# Multiplicities

$$P = ((\nu x) \,\overline{a}\langle x \rangle.x(y).\overline{y}\langle 42 \rangle) \mid ! \,a(r).\overline{r}\langle s \rangle$$


- $\bar{a}^1$ : One output on a
- $a^{\omega}$ : Arbitrarily many inputs on a
- $\bar{s}^*$ : Unspecified number of outputs on s

## Multiplicities

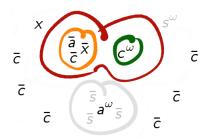
$$P = ((\nu x) \,\overline{a}\langle x\rangle.x(y).\overline{y}\langle 42\rangle) \mid ! \,a(r).\overline{r}\langle s\rangle$$


- $\bar{a}^1$ : One output on a
- $a^{\omega}$ : Arbitrarily many inputs on a
- $\bar{s}^{\star}$ : Unspecified number of outputs on s

## Composing Multiplicity Types



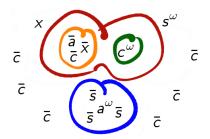
$$(c^{\omega}; \overline{c^{\star}}) \vdash !c(tu).\overline{t}\langle u\rangle (\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c^{\star}}a^{\omega}x) \vdash \overline{c}\langle ax\rangle$$
 
$$(\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c^{\star}}a^{\omega}x) \vdash \overline{c}\langle ax\rangle |!c(tu).\overline{t}\langle u\rangle$$


$$(\bar{a}\bar{c}\bar{x}c^{\omega}a^{\omega}\bar{s}^{\bigstar};\bar{c}^{\bigstar}s^{\omega}x)\vdash\bar{c}\langle ax\rangle|!c(tu).\bar{t}\langle u\rangle|!a(r).\bar{r}\langle s\rangle$$



$$(c^{\omega}; \overline{c}^{\bigstar}) \vdash !c(tu).\overline{t}\langle u \rangle (\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c}^{\bigstar}a^{\omega}x) \vdash \overline{c}\langle ax \rangle$$
 
$$(\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c}^{\bigstar}a^{\omega}x) \vdash \overline{c}\langle ax \rangle |!c(tu).\overline{t}\langle u \rangle$$

$$(\bar{a}\bar{c}\bar{x}c^{\omega}a^{\omega}\bar{s}^{\bigstar};\bar{c}^{\bigstar}s^{\omega}x)\vdash\bar{c}\langle ax\rangle|!c(tu).\bar{t}\langle u\rangle|!a(r).\bar{r}\langle s\rangle$$


# Composing Multiplicity Types



$$(c^{\omega}; \overline{c}^{\bigstar}) \vdash !c(tu).\overline{t}\langle u \rangle (\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c}^{\bigstar}a^{\omega}x) \vdash \overline{c}\langle ax \rangle$$
 
$$(\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c}^{\bigstar}a^{\omega}x) \vdash \overline{c}\langle ax \rangle |!c(tu).\overline{t}\langle u \rangle$$

$$(\bar{a}\bar{c}\bar{x}c^{\omega}a^{\omega}\bar{s}^{\bigstar};\bar{c}^{\bigstar}s^{\omega}x)\vdash\bar{c}\langle ax\rangle|!c(tu).\bar{t}\langle u\rangle|!a(r).\bar{r}\langle s\rangle$$

## Composing Multiplicity Types



$$\begin{array}{c} (c^{\omega}; \overline{c}^{\bigstar}) \vdash ! c(tu).\overline{t}\langle u \rangle \\ (\overline{a}\overline{c}\overline{x}; c^{\omega}\overline{c}^{\bigstar}a^{\omega}x) \vdash \overline{c}\langle ax \rangle \end{array} \right\} (\overline{a}\overline{c}\overline{x}c^{\omega}; \overline{c}^{\bigstar}a^{\omega}x) \vdash \overline{c}\langle ax \rangle |! c(tu).\overline{t}\langle u \rangle \\ (\overline{a}\overline{c}\overline{x}c^{\omega}a^{\omega}\overline{s}^{\bigstar}; \overline{c}^{\bigstar}s^{\omega}x) \vdash \overline{c}\langle ax \rangle |! c(tu).\overline{t}\langle u \rangle |! a(r).\overline{r}\langle s \rangle$$

### Conclusion

Characterising two liveness properties in a mobile process through the use of a type system.

#### Our contribution:

- $\bullet$  A formalism describing liveness properties in the  $\pi\text{-calculus}$
- Environment in the type ⇒ Compositionality
- Labels ⇒ non-transitive dependencies

#### More info:

http://maxime.gamboni.org/